Broadening of N.M.R. Signals of Nuclei Coupled to Fast Relaxing

Spin- $\frac{1}{2}$ Nuclei: An Example of T_1 Spin-decoupling

By FRANK BRADY and RAY W. MATTHEWS*

(Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB)

and MARK J. FORSTER and DUNCAN G. GILLIES*

(The Bourne Laboratory, Department of Chemistry, Royal Holloway College, University of London, Egham Hill, Egham, Surrey TW20 0EX)

Summary Broadening effects in the spectra of spin- $\frac{1}{2}$ nuclei, A, coupled to fast relaxing spin- $\frac{1}{2}$ nuclei, X, have been related to the T_1 value of X and hence provide a new method for measuring this parameter at high field on account of enhanced relaxation by the chemical shift anisotropy mechanism.

EVIDENCE is accumulating to show that linewidths of spin- $\frac{1}{2}$ nuclei, A, (e.g. A = ¹H, ¹³C, ³¹P) coupled to fast relaxing spin- $\frac{1}{2}$ nuclei, X, (e.g. ¹⁹⁵Pt, ¹¹⁹⁹Hg, ² ²⁰⁵Tl³) may be dominated by relaxation at X, particularly at high field. Specification of the relationship between the broadening effects in the A spectrum and relaxation at X provides a new and facile means of determining the spin-lattice relaxation of X.

These lineshape phenomena are examples of the T_1 spindecoupling effect noted previously⁴ for the effect of dissolved oxygen on proton spin-spin multiplets. The spin-lattice relaxation of the X nuclei produces an effect analogous to that of chemical exchange on the multiplet and hence a useful insight may be gained by treating the effect of changes in the X spin-state on the A spectrum of an AX spin system in terms of two-site exchange. Assigning the two A components respectively to the α and β spin states of X, standard exchange equations may be applied noting that the lifetimes of the equally populated spin states, τ_{α} and τ_{β} , are related to the transition probability, $W_{\alpha\beta}$, and spin-lattice relaxation of X, T_{1x} ,^{5a} by $\tau_{\alpha}^{-1} = \tau_{\beta}^{-1} = W_{\alpha\beta} = (2T_{1x})^{-1}$. The most usual situation corresponds to the slow exchange limit when $\tau_{\alpha} >> (2\pi J)^{-1}$. In this case the broadening of each A component is just $(\pi\tau_{\alpha})^{-1}$ or $(2\pi T_{1x})^{-1}$. Thus the observed line width is given by equation (1), were $(\pi T'_{2A})^{-1}$ is the sum

$$\Delta v_{\frac{1}{2}}(A) = (\pi T'_{2A})^{-1} + (2\pi T_{1X})^{-1}$$
(1)

of the natural linewidth of A and magnetic field inhomogeneity broadening. The general treatment of Navon and Polak⁴ for first-order $A_m X_n$ spectra yields the same result in the slow exchange limit for the $A_m X$ case, and also provides a means of calculating A-multiplet lineshapes for faster exchange rates, although other formulations of the exchange problem could of course be used.

It should be noted that although scalar relaxation of the second kind^{6a} is undoubtedly responsible for the broadening, the usual expressions^{6b} for relaxation at A are inappropriate in the case of non-overlapping A-components where the condition^{6a} $(2\pi J)^{-1} >> T_{1X}$, implying collapse to a single resonance, clearly does not apply. The situation is analogous, however, to broadened, non-overlapping components of a spin- $\frac{1}{2}$ nucleus coupled to a quadrupolar nucleus (e.g. ¹H-¹⁴N)^{5b} although in this case differential broadening arises from unequal lifetimes of the quadrupolar nuclear spin-states.

The value of $(\pi T'_{2A})^{-1}$ can be obtained from non-coupled signals in the A spectrum and, for some X nuclei (e.g. ¹⁹⁵Pt, ¹⁹⁹Hg), the central uncoupled signal arising from A connected to the 'n.m.r. inactive' isotope of X provides a particularly convenient measure. The ability of equation (1) to yield T_{1X} with accuracy increases with increasing $(2\pi T_{1X})^{-1}$, *i.e.* with increasing relaxation rate of X. The situation will be especially favourable for X nuclei which relax significantly *via* the chemical shift anisotropy (C.S.A.) mechanism and where the A spectra are determined at high magnetic field, B_0 , because $(T_{1X})^{-1}$ (C.S.A.) $\propto B_0^2$ [$(\pi T'_{2A})^{-1}$ is essentially field independent]. Equation (2) gives the C.S.A. contribution for the extreme narrowing condition and axial symmetry,⁷ and indicates that the applicability of this method for determining T_{1x} also depends on the value of γ_x and the chemical shift anisotropy in the particular molecular species.

Illustrating the use of equation (1) we have obtained $\Delta v_{\frac{1}{2}}(H) = 55 \text{ Hz}$ for $\text{Tl}(\text{CH}_{3)_2}\text{NO}_3$ in $D_2\text{O}$ (degassed) at 400 MHz and 300 K. Without allowances for $(\pi T'_{2\text{H}})^{-1}$ and the effect of overlapping components coupled to ²⁰³Tl and ²⁰⁵Tl (together $\langle ca. 4 \text{ Hz} \rangle$, equation (1) predicts $T_{1(\text{TI})} = ca. 2.9 \text{ ms}$ in good agreement with a preliminary $T_{1(\text{TI})}$ for this solution of ca. 2.9 ms at 295 K and the same magnetic field.

Where the C.S.A. contribution to relaxation of X is 100%, combination of equations (1) and (2) and neglecting $(\pi T_{2A})^{-1}$ yields $\Delta v_{\frac{1}{2}}(A) = (3/7)\Delta v_{\frac{1}{2}}(X)$, where $\Delta v_{\frac{1}{2}}(X) = (\pi T_{2X})^{-1}$. For the thallium solution noted above, $\Delta v_{\frac{1}{2}}(T) = ca$. 140 Hz at 231.5 MHz³ which is consistent with the predicted value of $(7/3)\Delta v_{\frac{1}{2}}(H) = 128$ Hz. The additional broadening in the ²⁰⁵Tl spectrum can be ascribed to the effects of temperature inhomogeneity at high field [temperature coefficient of chemical shift for Tl (CH₃)₂NO₃ in H₂O = 0.44 p.p.m. K⁻¹].⁸ In cases where the relaxation of X is not totally dominated by the C.S.A. mechanism, the relative contributions of other mechanisms (*e.g.* spin rotation) may be ascertained by observation of broadening effects on A as a function of temperature and magnetic field.

We thank the S.R.C. for studentships to F.B. and M.F. and the U.L.I.R.S. WH-400 N.M.R. Service at Queen Mary College for spectra.

$$(T_{1X})^{-1}(C.S.A.) = (6/7)(T_{2X})^{-1}(C.S.A.) = (2/15)\gamma_X^2 B_0^{2-1} (\sigma_{||} - \sigma_{\perp})^2 \tau_c$$
(2)

(Received, 10th June 1981; Com. 682.)

¹ J. Y. Lallemand, J. Soulie, and J. C. Chottard, J. Chem. Soc., Chem. Commun., 1980, 436.

² N. S. Ham, E. A. Jeffery, T. Mole, and S. N. Stuart, *Chem. Commun.*, 1967, 254; A. J. Brown, O. W. Howarth, and P. Moore, *J. Chem. Soc.*, *Dalton Trans.*, 1976, 1589; L. P. Blaauw, A. D. H. Clague, D. G. Gillies, G. R. Hays, and R. Huis, *J. Magn. Reson.*, 1981, **42**, 420.

³ F. Brady, M. J. Forster, D. G. Gillies, and R. W. Matthews, Inorg. Nucl. Chem. Lett., 1981, 17, 155.

⁴G. Navon and M. Polak, Chem. Phys. Lett., 1974, 25, 239.

⁵ J. A. Pople, W. G. Schneider, and H. J. Bernstein, 'High-resolution Nuclear Magnetic Resonance,' McGraw-Hill, New York, 1959; (a) p. 24; (b) p. 228.

⁶ A. Abragam, 'The Principles of Nuclear Magnetism,' Oxford University Press, London, 1961; (a) p. 309; (b) p. 311.

⁷ T. C. Farrar and E. D. Becker, 'Pulse and Fourier Transform N.M.R.,' Academic Press, London, 1971, ch. 4.

⁸ P. J. Burke, I. D. Cresshull, D. G. Gillies, and R. W. Matthews, J. Chem. Soc., Dalton Trans., 1981, 132.