Conversion of a Bridged Vinylalkylidene Complex into Cluster Complexes of Cobalt, Iron, and Manganese: X-Ray Crystal Structures of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{6}-\right.$ $\left.(\mu-\mathrm{CO})_{2}\left(\mu_{3}-\mathrm{CMe}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{FeCo}_{3}(\mathrm{CO})_{7}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$

By Pascual Brun, Gordon M. Dawkins, Michael Green, Rona M. Mills, Jean-Yves Salaün, F. Gordon A. Stone, and Peter Woodward
(Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary The compound $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{C}=\mathrm{CH}_{2}\right)\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ reacts with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$, $\left[\mathrm{H}_{3} \mathrm{Mn}_{3}(\mathrm{CO})_{12}\right]$, $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$, or $\left[\mathrm{Co}_{4}(\mathrm{CO})_{12}\right]$ to afford, respectively, $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{6}(\mu-\mathrm{CO})_{2}\left(\mu_{3}-\mathrm{CMe}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right], \quad\left[\mathrm{Fe}_{2} \mathrm{Mn}(\mathrm{CO})_{3}(\mu-\mathrm{CO})_{5}-\right.$
$\left.\left(\mu_{3}-\mathrm{CMe}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, and $\left[\mathrm{Co}_{3} \mathrm{Fe}(\mathrm{CO})_{7}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{C}=\mathrm{CH}_{2}\right)-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, the structures of the Fe_{3} and $\mathrm{Co}_{3} \mathrm{Fe}$ clusters being established by X-ray diffraction studies.

Although dimetal complexes with bridging $\mathrm{C}=\mathrm{CR}_{2}$ ligands are well established, addition of metal-ligand systems to these species as a route to metal cluster compounds has not been investigated. Our knowledge of multi-site metal-co-ordinated vinylalkylidene ligands is limited to the compounds $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{C}=\mathrm{CH}_{2}\right)\right]$ (ref. 1), $\left[\mathrm{NiRu}_{3}-\right.$ $\left.(\mathrm{CO})_{9}\left\{\mu_{4}-\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{\mathrm{t}}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (ref. 2), and $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{10^{-}}\right.$ $\left.\left(\mu_{3}-\mathrm{OR}\right)\left(\mu_{2}-\mathrm{PPh}_{2}\right)\left\{\mu_{4}-\mathrm{C}=\mathrm{C}(\mathrm{H}) \operatorname{Pr}^{1}\right\}\right]$ (ref. 3). The observation ${ }^{1,4}$ that the triosmium compound can be readily transformed into $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})_{3}\left(\mu_{3}-\mathrm{CMe}\right)\right]$ suggests that bridged vinylalkylidene compounds might serve as precursors to a variety of triply bridged methylalkylidyne complexes. Development of a simple synthesis ${ }^{5}$ of $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\right.$ -$\left.\left(\mu-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (1) provides an opportunity to explore these ideas.

Reaction of (1) with excess of $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ in diethyl ether $\left(25{ }^{\circ} \mathrm{C}\right.$; 3 days) affords $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ and the black tri-iron complex (2) (11\% yield) (see Scheme). \dagger A single-

(5)

(1)

(3)
(2)

Scheme. (i) $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$; (ii) $\mathrm{C}_{10} \mathrm{H}_{12}$; (iii) $\left[\mathrm{Mn}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{12}\right]$ (iv) $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ or $\left[\mathrm{CO}_{4}(\mathrm{CO})_{12}\right]$; (v) toluene, reflux.
crystal X-ray diffraction study established the molecular structure (Figure 1). \ddagger
Crystal data: $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Fe}_{3} \mathrm{O}_{8}, M=483 \cdot 4$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=8.943(4), b=12.156(4), c=$ 15.904(8) $\AA, \quad \beta=103.57(4)^{\circ}, U=1681(2) \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.91 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=960, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=26.0 \mathrm{~cm}^{-1}$. Current $R 0.0265\left(R^{\prime} 0.0258\right)$ for 2771 reflections $[220 \mathrm{~K}$, $2 \cdot 9 \leqslant 2 \theta \leqslant 55^{\circ}, I \geqslant 3 \cdot 0 \sigma(I)$, Nicolet $P 2_{1}$ diffractometer, Mo- $K_{\alpha} X$-radiation, graphite monochromator, $\bar{\lambda}=0.71069$ \AA].

The cluster (2) is characterised by an $\mathrm{Fe}_{3} \mathrm{C}$ core, which has near, but not exact, mirror symmetry. The Fe_{3} triangle is near-isosceles, and the μ_{3} - CMe ligand has $\mathrm{C}(9)$ at approximately equal distances from $\mathrm{Fe}(1)$ and $\mathrm{Fe}(2)$, but significantly closer to $\mathrm{Fe}(3)$. The $\mathrm{C}(9)-\mathrm{C}(10)$ vector is perpendicular to the plane of the metal atom triangle. Of the eight carbonyl groups, two bridge the 'equal' sides of the metal triangle; the other six form mutually orthogonal groups of three on $\mathrm{Fe}(1)$ and $\mathrm{Fe}(2)$. The formally analogous structure $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{8}\left(\mu_{3}-\mathrm{CEt}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Me}_{2} \mathrm{Et}\right)\right]$ shows 6 similar asymmetry in the location of the $\mu_{3}-\mathrm{C}$ atom where the comparable $\mathrm{Fe}-\mathrm{C}$ distances are $1.938(4), 1.974(5)$, and 1.910(4) \AA.

Figure 1. Molecular structure of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{6}(\mu-\mathrm{CO})_{2}\left(\mu_{3}\right.\right.$-CMe)-$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2). Important bond lengths include: $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ $2 \cdot 602(1), \mathrm{Fe}(1)-\mathrm{Fe}(3) 2 \cdot 519(1), \mathrm{Fe}(2)-\mathrm{Fe}(3) 2 \cdot 509(1), \mathrm{Fe}(1)-\mathrm{C}(9)$ $1.934(2), \mathrm{Fe}(2)-\mathrm{C}(9) 1 \cdot 959(3), \mathrm{Fe}(3)-\mathrm{C}(9) 1 \cdot 902(3) \AA$.

Formation of (2) from (1) evidently involves a complex reaction sequence with break-up of (1) and hydrogen abstraction. Reaction of (2) with dicyclopentadiene (refluxing toluene; 12 h) affords (3). \dagger Treatment (benzene, reflux; $\mathbf{3} \mathrm{h}$) of ($\mathbf{1}$) with $\left[\mathrm{Mn}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{12}\right]$ provides a rational synthesis of the black crystalline mixed-metal cluster (4)
\dagger Selected spectroscopic data (i.r. measured in cyclohexane and n.m.r. in $\left[{ }^{2} \mathrm{H}_{6}\right]$-acetone, unless otherwise indicated): (2), vco 2068 s , $2021 \mathrm{vs}, 2013 \mathrm{~s}, 1981 \mathrm{~m}, 1971 \mathrm{~m}, 1859 \mathrm{~m}$, and $1825 \mathrm{w} \mathrm{cm}{ }^{-1}$; n.m.r.: ${ }^{1} \mathrm{H}, \delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), 4.6(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$ and $4.0\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, δ (p.p.m.), $333\left(\mu_{3}-\mathrm{C}\right), 221(\mathrm{CO}), 95\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $52(\mathrm{Me}) . \quad(3), \nu_{\mathrm{Co}}$ (tetrahydrofuran) 1813 s and $1761 \mathrm{~m} \mathrm{~cm}{ }^{-1}$; n.m.r.: ${ }^{1} \mathrm{H}, \delta 6 \cdot 2(\mathrm{~s}, 3 \mathrm{H}$, Me) and $4.6\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \delta(\mathrm{p} . \mathrm{p} . \mathrm{m}),. 364-5\left(\mu_{3} \mathrm{C}\right), 268(\mu-\mathrm{CO}), 92\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and 57 (Me). (4), $\mathrm{V}_{\mathrm{co}} 2025 \mathrm{~s}, 1974 \mathrm{~s}, 1944 \mathrm{~s}$, $1846 \mathrm{~s}, 1820 \mathrm{~s}$, and $1790 \mathrm{~m} \mathrm{~cm}{ }^{-1}$; n.m.r.: ${ }^{1} \mathrm{H}, \delta 5.9$ (s, $3 \mathrm{H}, \mathrm{Me}$) and 4.9 (s, $10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$) ; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \delta$ (p.p.m.), $350\left(\mu_{3}-\mathrm{C}\right), 263(\mu-\mathrm{CO}), 254$ $(\mu-\mathrm{CO}), 224(\mathrm{CO}), 219(\mathrm{CO}), 94\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $54(\mathrm{Me}) . \quad(5), v_{C O}$ (pentane), $2081 \mathrm{~s}, 2040 \mathrm{vs}, 2003 \mathrm{~m}, 1994 \mathrm{w}, 1851 \mathrm{~s}$, and $1809 \mathrm{w} \mathrm{cm}{ }^{-1}$.
\ddagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.
(60% yield). \dagger Probably the initial step in the formation of (4) involves 'insertion' of the $\mu-\mathrm{C}=\mathrm{CH}_{2}$ fragment into an MnH bond. Interestingly, in refluxing toluene (48 h), compound (4) affords (3).

Figure 2. Molecular structure of $\left[\mathrm{FeCo}_{3}(\mathrm{CO})_{7}\left(\mu-\mathrm{CO}_{2}\left(\mu_{4}-\mathrm{C}=\right.\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right](5)$; mirror relationships are denoted by primes.
Important bond lengths include: $\mathrm{Co}(1)-\mathrm{Fe} 2 \cdot 499(2), \mathrm{Co}(1)-\mathrm{Co}\left(\mathbf{1}^{\prime}\right)$ $2 \cdot 456(3), \mathrm{Co}(1)-\mathrm{Co}(2) 2 \cdot 581(3), \mathrm{C}(21)-\mathrm{Fe} 1 \cdot 933(8), \mathrm{C}(21)-\mathrm{Co}(1)=$ $\mathrm{C}(21)-\mathrm{Co}\left(1^{\prime}\right) 1 \cdot 917(6), \mathrm{C}(21)-\mathrm{Co}(2) 2.087(8), \mathrm{C}(22)-\mathrm{Co}(2) 2.085(10)$, $\mathrm{C}(21)-\mathrm{C}(22) 1 \cdot 431(12) \AA$.

A third type of cluster-forming reaction occurs on treatment (diethyl ether; $25^{\circ} \mathrm{C}$; 40 h) of (1) with $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ \{or with $\left[\mathrm{CO}_{4}(\mathrm{CO})_{12}\right]$ in toluene at reflux \}. The product (5) (55% yield) \dagger was structurally identified by an X-ray diffraction study. \ddagger
Crystal data: $\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{Co}_{3} \mathrm{FeO}_{9}, M=\mathbf{5 7 5 \cdot 6}$, orthorhombic, space group Pcam (non-standard setting of Pbcm , No. 57), $a=18 \cdot 135(16), b=8.194(9), c=12.711(10) \AA, U=$ $1889(3) \AA^{3}, Z=4, D_{\mathrm{c}}=2.03 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1128$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=33.9 \mathrm{~cm}^{-1}$. Current $R 0.0541\left(R^{\prime} 0.0537\right)$ for 1772 reflections [$220 \mathrm{~K}, 2 \cdot 9 \leqslant 2 \theta \leqslant 60^{\circ}, I \geqslant 2 \cdot 0 \sigma(I)$].

The molecule (Figure 2) has a 'butterfly' arrangement of the metal atom core, with overall mirror symmetry (crystallographically required). Atoms $\mathrm{Co}(\mathrm{I})$, and its mirror image $\mathrm{Co}\left(1^{\prime}\right)$, define the body of the butterfly, atoms Fe and $\mathrm{Co}(2)$ the wingtips, and the mirror plane passes through $\mathrm{O}(4)$, $\mathrm{C}(4), \mathrm{Co}(2), \mathrm{C}(21), \mathrm{C}(22), \mathrm{Fe}, \mathrm{C}(11), \mathrm{H}(11)$, and the midpoint of $\mathrm{C}(13)-\mathrm{C}\left(13^{\prime}\right)$. The torsion angle $\mathrm{Co}(2)-\mathrm{Co}(1)-$ $\mathrm{Co}\left(1^{\prime}\right)-\mathrm{Fe}$ is $124 \cdot 1(1)^{\circ}$. Two of the nine carbonyl ligands bridge the $\mathrm{Fe}-\mathrm{Co}$ edges, approximately symmetrically; the others are approximately mutually orthogonal. The bridging $\mathrm{C}=\mathrm{CH}_{2}$ moiety lies astride the mirror; $\mathrm{C}(21)$ is nearly equivalently bonded to all four metal atoms with η^{2}-interaction of $\mathrm{Co}(2)$ with $\mathrm{C}(21)-\mathrm{C}(22)$. This mode of co-ordination is closely analogous to that found in the NiRu_{3} and Ru_{4} clusters mentioned above, ${ }^{2,3}$ and similar ${ }^{7}$ to the co-ordination of one of the CO ligands in $\left[\mathrm{HFe}_{4}\right.$ -$\left.(\mathrm{CO})_{13}\right]^{-}$and of CH in $\left[\mathrm{HFe}_{4}(\mathrm{CO})_{12}(\mathrm{CH})\right] .{ }^{8}$
We thank the S.R.C. for support and the Royal Society and C.N.R.S. for a Fellowship under the European Exchange Programme (J-Y.S.).
(Received, 15th June 1981; Com. 705.)

[^0]
[^0]: ${ }^{1}$ A. J. Deeming and M. Underhill, J. Chem. Soc., Chem. Commun., 1973, 277; J. Chem. Soc., Dalton Trans., $1974,1415$.
 ${ }^{2}$ E. Sappa, A. Tiripicchio, and M. Tiripicchio-Camellini, J. Chem. Soc., Chem. Commun., 1979, 254; Inorg. Chim. Acta, 1980, 41, 11.
 ${ }^{3}$ A. J. Carty, S. A. MacLaughlin, and N. J. Taylor, J. Chem. Soc., Chem. Commun., 1981, 476.
 ${ }^{4}$ J. P. Yesinowski and D. Bailey, J. Organomet. Chem., 1974, 65, C27.
 ${ }_{5}^{5}$ G. M. Dawkins, M. Green, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1980, 1120.
 ${ }^{6}$ S. Aime, L. Milone, E. Sappa, and A. Tiripicchio, J. Chem. Soc., Dalton Trans., 1977, 227.
 ${ }^{7}$ M. Manassero, M. Sansoni, and G. Longoni, J. Chem. Soc., Chem. Commun., 1976, 919.
 ${ }^{8}$ M. A. Beno, J. M. Williams, M. Tachikawa, and E. L. Muetterties, J. Am. Chem. Soc., 1980, 102, 4542; $1981,103,1485$.

