Associative Substitution Reactions of *Re(CO),

By **ARNOLD Fox,** JOHN **MALITO,** and **ANTHONY PoE***

(J. Tuzo Wilson Laboratories, Erindale College, University of Toronto, Mississauga, Ontario L5L 1C6, *Canada)*

Summary Studies of competition between substitution and IT has been strongly argued that the pronounced lability chlorine abstraction reactions of photochemically towards substitution of 17-electron 5-co-ordinate metalgenerated \cdot Re(CO)₅ radicals show that substitution pro-
centred radicals such as \cdot Mn(CO)₅ and \cdot Re(CO)₅ is due to
ceeds *via* a second-order associative path and not *via* CO rapid CO dissocation.¹ There i rapid CO dissocation.¹ There is, however, substantial indissociation. direct evidence in the literature that CO dissociation is

relatively slow2 **~8** and that rapid substitution proceeds *via* an associative mechanism. $3-5$ We have supplemented this indirect evidence by more direct studies that involve competition between chlorine atom abstraction from carbon tetrachloride and ligand substitution reactions of \cdot Re(CO)₅. Similar studies [involving competition between chlorine atom abstraction and other oxidation reactions) have been reported recently by Hepp and Wrighton⁶ and such studies clearly provide a powerful method of characterizing reaction mechanisms and reactivities of metal-centred organometallic radicals of this kind.

The \cdot Re(CO)₅ radicals were generated ^{1,6,7} in deoxygenated cyclohexane by photolysing $\text{Re}_2(\text{CO})_{10}$ at room temperature with a *500* W Hanovia mercury lamp without a filter. In the presence of mixtures of $CCl₄$ and triphenylphosphine or tri-n-butylphnsphine the only reaction products discernible by i.r. spectroscopy were ClRe(CO)₅ and ClRe(CO)₄L.⁺ The mechanism proposed for the formation of these products is shown in equations (1) - (6) . The ratio $[CIRe(CO)₅]$ / $[CIRe(CO)₄L] = [U]/[S] = (A_u/\epsilon_u)/(A_s/\epsilon_s)$ was found to

$$
\text{Re}_2(\text{CO})_{10} \overset{hv}{\iff} 2 \cdot \text{Re}(\text{CO})_5 \tag{1}
$$

$$
\cdot \text{Re(CO)}_{5} \longrightarrow \text{CIRe(CO)}_{5} \tag{2}
$$

$$
\cdot \text{Re(CO)}_{5} \quad \rightleftharpoons \quad \cdot \text{Re(CO)}_{4} + \text{CO} \tag{3}
$$

$$
Re(CO)4 + L \rightarrow Re(CO)4L \qquad (4)
$$

$$
Re(CO)_{5} + L \rightarrow Re(CO)_{4}L + CO \qquad (5)
$$

$$
\cdot \text{Re(CO)}_4 \text{L} \longrightarrow \text{CIRe(CO)}_4 \text{L}
$$
 (6)

be independent of irradiation time over the range **5-25** min and 20-60% reaction $(A_u$ and A_s , and ϵ_u and ϵ_s , are appropriate absorbances and molar absorption coefficients of the unsubstituted and substituted products). It was also closely proportional to $[CCl_4]$ at constant $[PPh_3]$, confirming the expected second-order nature of reaction **(2).** Further substitution into \cdot Re(CO)₄L must be relatively slow since no disubstituted products were observed.

 CC

The ratio [S]/[U] must, therefore, be given by equation (7). The Figure shows that when $L = \text{PPh}_3$ the dependence

$$
[\mathrm{S}]/[\mathrm{U}] = (A_{\mathrm{S}}/A_{\mathrm{u}})(\epsilon_{\mathrm{u}}/\epsilon_{\mathrm{S}}) = \{k_{3}+k_{5}[\mathrm{L}]\}/k_{2}[\mathrm{CCl}_{4}] \tag{7}
$$

of $[S]/[U]$ on $[PPb_3]/[CCl_4]$ is linear, the straight line having a negligible intercept at $[PPh_3] = 0$. No effect due to the presence or absence of CO was observed. These results show unambiguously that k_3 , the rate constant for CO dissociation, is negligible and that substitution is exclusively first order in [PPh₃] and associative in nature. The gradients lead to the values $k_5/k_2 = 16.9$ and 19.2 when the yields of the products were monitored at **2 106** and **1945** cm-l,

FIGURE. Dependence of the ratio of substituted to unsubstituted rhenium carbonyl chloride product on [PPh₃]/[CCl₄].
S = ClRe(CO)₄(PPh₃), U = ClRe(CO)₅, $x = \epsilon(2.106 \text{ cm}^{-1})/$
 $\epsilon(2.045 \text{ cm}^{-1}) = 0.0826 \text{ for } \bullet$, reactions under atmospheres of Ar, and **m**, reactions under atmospheres of CO; $x = \epsilon(1\,945 \text{ cm}^{-1})$ $\sqrt{\epsilon}$ (2045 cm⁻¹) = 0.187 for \bigcirc , reactions under Ar, and \bigcirc , reactions under CO.

respectively, and when $\epsilon_{\rm S}/\epsilon_{\rm u} = x$ was taken as 0.0826 and **0.187,** respectively. Analysis of other data over a wide range of both $[PPh_3]$ and $[CCl_4]$ leads to a mean value $k_5/k_2 = 22.1$ with a maximum uncertainty of *ca*. $\pm 15\%$. Similar behaviour was found when $L = PBu_3^n$ and $k_5/k_2 = 34$ when $[CIRe(CO)₄(PBu₃ⁿ)]$ was monitored at 1935 cm⁻¹, the maximum uncertainty being *ca.* **15%.**

Although both substitutions are associative in nature the dependence of $k₅$ on the nucleophilicity of the entering ligand is small.⁸ This low selectivity shown by \cdot Re(CO)₅ can be associated with a high susceptibility to nucleophilic attack that must arise from the half-empty orbital available for L-Re bond making. **A** similar explanation has been offered for the low selectivity of $-Mn({\rm CO})_5({\rm PPh})_3$ inferred for associative replacement of the PPh₃.⁴

We thank the University of Toronto and the Natural Science and Engineering Research Council, Ottawa, for support.

(Received, 7th July **1981** ; *Corn.* **786.)**

D. R. Kidd and T. L. Brown, *J. Am. Chem. Soc.*, 1978, **100**, 4095; B. L. Byers and T. L. Brown, *ibid.*, 1977, 99, 2527.
J. P. Fawcett, A. J. Poë, and K. R. Sharma, *J. Am. Chem. Soc.*, 1976, 98, 1401.
J. P. Fawcett, A. J

-
-
- *ti* **A.** J. Po&, *Transition Met. Chem.,* **1981,** in the press.
-
- **A.** F. **Hepp** and **M.** S. Wrighton, *J. Am. Chem. SOC.,* **1981, 103, 1258. M.** S. Wrighton and D. S. Ginley, *J. Am. Chem. SOC.,* **1975, 97, 2065.**
-

⁷ ClRe(CO), has an i.r. band at **2 045** cm-l that is easily resolved from the bands due to Re,(CO),, at **2 070** and **2 015** cm-l. ClRe- $(CO)_4$ (PPh_a) has bands at 2 106 and 1 954 cm⁻¹ and CIRe(CO)₄(PBu₃ⁿ) has one at 1 935 cm⁻¹ that are all also clearly resolvable.