Polyhydrido-platinum Clusters: Synthesis and X-Ray Crystal Structures of $\left[\mathrm{Pt}_{3} \mathrm{H}_{6}\left(\mathrm{PBu}_{3}^{\mathrm{t}}\right)_{3}\right],\left[\mathrm{Pt}_{4} \mathrm{H}_{2}\left(\mathrm{PBu}_{3}^{\mathrm{t}}\right)_{4}\right]$, and $\left[\mathrm{Pt}_{4} \mathrm{H}_{8}\left(\mathrm{PPr}_{2}{ }_{2} \mathrm{Ph}\right)_{4}\right]$

By Peter W. Frost, Judith A. K. Howard, John L. Spencer, and David G. Turner
(Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 ITS)
and David Gregson
(Institut Laue Langevin, 156X Centre de Tri, 38042 Grenoble, France)

 give the triangular complex $\left[\mathrm{Pt}_{3} \mathrm{H}_{6}\left(\mathrm{PBu}_{3}{ }_{3}\right)_{3}\right]$ (1) which is dehydrogenated with $\mathrm{C}_{2} \mathrm{H}_{4}$ to form the tetrahedral complex $\left[\mathrm{Pt}_{4} \mathrm{H}_{2}\left(\mathrm{PBu}_{3}\right)_{4}\right](\mathbf{2})$, whereas $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PPr}^{1}{ }_{2} \mathrm{Ph}\right)\right]$ reacts with hydrogen yielding directly the four-metalatom sphenoidal cluster $\left[\mathrm{Pt}_{4} \mathrm{H}_{8}\left(\mathrm{PPr}_{2}{ }_{2} \mathrm{Ph}\right)_{4}\right]$ (3).

There is current interest in the application of metal clusters to the problems of homogeneous and heterogeneous catalysis. ${ }^{1}$ Whereas many of the reported transition-metal clusters are electronically 'saturated' and relatively inert, a considerable chemistry has developed around some of the formally electron-deficient species such as $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}\right] .{ }^{2}$ We now report three new phosphine-stabilized clusters of platinum containing the catalytically interesting hydride ligand.

(1)
 light petroleum, 16 h) gave large yellow crystals of complex (1) in good yield. The compound showed $v(\mathrm{PtH})$ i.r. absorptions at 2180 and $c a .1500 \mathrm{~cm}^{-1}$, and elemental analysis indicated the formula $\left[\left(\mathrm{PtPBu}_{3}{ }_{3}\right)_{x} \mathrm{H}_{y}\right]$. Preliminary n.m.r. results suggested a triangular cluster $\left(C_{3 h}\right.$ or $C_{3 v}, x=3, y=6$) and an X-ray diffraction study \dagger (Figure 1) confirmed the triangular metal core. Unfortunately the structure is disordered in that although there

Figure 1. Molecular structure of complex (1) $\left[\mathrm{Pt}_{3} \mathrm{H}_{6}\left(\mathrm{PBu}_{3}\right)_{9}\right]$ showing only the heavy atoms. Mean distances (\AA) and angles (${ }^{\circ}$) are (e.s.d.s in parentheses refer to the mean) : $\mathrm{Pt}-\mathrm{Pt} 2 \cdot 82(3), \mathrm{Pt}-\mathrm{P}$ $2 \cdot 27(8) ; \angle \mathrm{P}-\mathrm{Pt}-\mathrm{Pt}(c i s) 115(2), \mathrm{P}-\mathrm{Pt}-\mathrm{Pt}($ trans $) 159(8) . \quad$ Deviations (\AA) from the plane of $\mathrm{Pt}(1), \mathrm{Pt}(2), \mathrm{Pt}(3): \mathrm{P}(1)-1 \cdot 07$, $\mathrm{P}(2)-0.24, \mathrm{P}(3) 0.99$.
are only three phosphorus positions, the ligand axis may pivot at phosphorus without greatly affecting the packing of the molecules, thus allowing six platinum positions arranged in two triangles. This 'ball-joint' disordering is presumably a consequence of the almost hemispherical shape of the PBu_{3} ligand. The solid-state structure is of low symmetry resembling the $C_{3 h}$ model but with two phosphines on opposite sides of the metal plane.
The low-temperature $\left(-80^{\circ} \mathrm{C}\right)^{1} \mathrm{H}$ n.m.r. spectrum of complex (1) showed two sets of hydride signals of equal intensity at $\delta-4 \cdot 00$ [d with ${ }^{195} \mathrm{Pt}$ satellites, $\mathrm{H}_{\text {bridging, }}$ ${ }^{2} J(\mathrm{PH}) 74,{ }^{1} J\left(\mathrm{Pt}^{\prime} \mathrm{H}\right) 565$, and $\left.{ }^{1} J\left(\mathrm{Pt}^{\prime \prime} \mathrm{H}\right) 405 \mathrm{~Hz}\right]$ and -7.54 [d with ${ }^{195} \mathrm{Pt}$ satellites, $\mathrm{H}_{\text {terminal }},{ }^{2} J(\mathrm{PH}) 25,{ }^{1} J(\mathrm{PtH}) 822$, and $\left.{ }^{2} J(\mathrm{PtH}) 100 \mathrm{~Hz}\right]$. At the same temperature the ${ }^{31} \mathrm{P}$ n.m.r. spectrum indicates a single type of phosphorus nucleus with one short range and two long range couplings to ${ }^{195} \mathrm{Pt}$, consistent with C_{3} molecular symmetry. As the temperature is raised, terminal and bridging hydride

[^0]ligands exchange and move around the cluster, although at $90^{\circ} \mathrm{C}$ the expected septet of quartets in the ${ }^{1} \mathrm{H}$ spectrum is not fully resolved. We have been unable to compare accurately the intensity of the hydride signal with that of the t-butyl protons. However, consideration of the molecular symmetry and the low-temperature n.m.r. spectra leads to the conclusion that $y=6$, and the cluster is thus iso-electronic with a number of well established species such as $\left[\mathrm{Pt}_{3}(\mathrm{CNBu})_{8}\right]$ and $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)_{3}\right] .{ }^{3}$
\[

$$
\begin{array}{cc}
{\left[\mathrm{Pt}_{4} \mathrm{H}_{2}\left(\mathrm{PBut}_{3}\right)_{4}\right]} & {\left[\mathrm{Pt}_{4} \mathrm{H}_{8}\left(\mathrm{PPr}_{2}^{1} \mathrm{Ph}_{4}\right]\right.} \\
(\mathbf{2}) & \text { (3) }
\end{array}
$$
\]

When a toluene solution of complex (1) was treated with ethylene ($1 \mathrm{~atm}, 27^{\circ} \mathrm{C}, 24 \mathrm{~h}$) ethane was formed and a dark red crystalline compound (2) was isolated from the solution. The ${ }^{31} \mathrm{P}$ n.m.r. spectrum strongly suggested a tetrahedral $\left\{\mathrm{PtPBu}_{3}{ }_{3}\right\}_{4}$ cluster $\left[28{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta 113.0\right.$ p.p.m., ${ }^{1} J(\mathrm{PtP})$ $4843,{ }^{2} J(\mathrm{PtP}) 376$, and ${ }^{3} J(\mathrm{PP}) 38 \mathrm{~Hz}$] and this was confirmed by a single-crystal X-ray diffraction study \ddagger (Figure 2a). One triangular face $[\mathrm{Pt}(1), \mathrm{Pt}(2), \mathrm{Pt}(3)]$ lies on a crystallographic mirror plane and the rest of the molecule is disordered about this plane. The molecular parameters are reasonably coherent and the deviations from T_{d} symmetry which are observed may be artifacts of the crystallographic disorder rather than a specific indication of hydride ligand positions. However, good evidence for the presence of hydrides was obtained from i.r. $[\mathrm{v}(\mathrm{PtH}), 1800-$ $1650 \mathrm{~cm}^{-1}$] and ${ }^{1} \mathrm{H}$ n.m.r. data [$28^{\circ} \mathrm{C}, \delta-35 \cdot 4$, five lines of the expected septet were observed, $J(\mathrm{PtH}) 564, J(\mathrm{PH})$ 0 Hz], the simplicity of the latter spectrum indicating fluxional behaviour. ${ }^{196} \mathrm{Pt}$ n.m.r. spectroscopy (${ }^{1} \mathrm{H}$ decoupled) revealed a second-order spectrum centred at $\delta 600 \cdot 1$ p.p.m. When the decoupling signal was removed each line of the spectrum split into a binomial triplet $[J(\mathrm{PtH}) 561 \mathrm{~Hz}]$ confirming the presence of two hydride ligands.

The sensitivity of the synthesis to the nature of the phosphine ${ }^{4}$ was again demonstrated by the hydrogenolysis of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PPr}^{1}{ }_{2} \mathrm{Ph}\right)\right]$ (light petroleum, $15{ }^{\circ} \mathrm{C}, 300 \mathrm{~atm}$, 16 h) which afforded large orange crystals of complex (3) for which ${ }^{31} \mathrm{P}$ n.m.r. data ($28{ }^{\circ} \mathrm{C}$) indicated a digonally distorted tetrahedral (sphenoidal) core. A single-crystal X-ray diffraction study§ (Figure 2 b) revealed a central $\mathrm{Pt}_{4} \mathrm{P}_{4}$ unit with S_{4} symmetry and four short and two long $\mathrm{Pt}-\mathrm{Pt}$ distances. From the i.r. spectrum it was evident that the molecule contained both terminal and bridging hydride ligands $\left[v(\mathrm{PtH}) 2100\right.$ and $\left.1550 \mathrm{br} . \mathrm{cm}^{-1}\right]$. At ambient temperatures these ligands are rapidly exchanging and were observed in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum as a septet of quintets $[\delta-4.55, J(\mathrm{PtH}) 286$ and $J(\mathrm{PH}) 12.5 \mathrm{~Hz}$]. The integrated intensity of the hydride signal was equivalent to eight hydrogens per molecule. At $-80^{\circ} \mathrm{C}$ the ${ }^{1} \mathrm{H}$ n.m.r. spectrum was markedly similar to that of (1), though not

(a)

(b)

Figure 2. (a) Molecular structure of complex (2) $\left[\mathrm{Pt}_{4} \mathrm{H}_{2}\left(\mathrm{PBu}_{8}\right)_{4}\right]$ showing only the heavy atoms. Selected distances (\AA) and angles (${ }^{\circ}$) are: $\mathrm{Pt}(1)-\mathrm{Pt}(2) 2.675(3), \mathrm{Pt}(1)-\mathrm{Pt}(3)$ 2.676(3), $\mathrm{Pt}(2)-\mathrm{Pt}(3)$ 2.667(3), $\mathrm{Pt}(1)-\mathrm{Pt}(4)$ 2.799(3), $\mathrm{Pt}(2)-\mathrm{Pt}(4)$ 2.810(3), $\mathrm{Pt}(3)-\mathrm{Pt}(4)$ 2•795(2), mean Pt-P 2•186(12); $\angle \mathrm{P}-\mathrm{Pt}-\mathrm{Pt}$ range from $137 \cdot 2(3)$ to $148 \cdot 3(4)$. (b) Molecular structure of complex (3) $\left[\mathrm{Pt}_{4} \mathrm{H}_{8}-\right.$ $\left.\left(\mathrm{PPr}_{2}{ }_{2} \mathrm{Ph}\right)_{4}\right]_{2}$ (molecule 1) showing only the heavy atoms. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ are $: \mathrm{Pt}(1)-\mathrm{Pt}(2) 2 \cdot 909(3), \mathrm{Pt}(1)-\mathrm{Pt}(3)$ 2.857(2), $\mathrm{Pt}(2)-\mathrm{Pt}(4) 2.848(3), \mathrm{Pt}(3)-\mathrm{Pt}(4) 2.870(3), \mathrm{Pt}(2)-\mathrm{Pt}(3)$ $3 \cdot 158(3), \mathrm{Pt}(1)-\mathrm{Pt}(4) 3 \cdot 010(3)$, mean $\mathrm{Pt}-\mathrm{P} 2 \cdot 23(3)$; the angles P-Pt-Pt fall in three groups, mean $\delta 104(4)$, mean $\epsilon 122(3)$, and mean ρ 167(3).
as well resolved, suggesting comparable distribution and bonding of the hydride ligands.
Comparison of complexes (2) and (3) reveals a number of striking contrasts such as the colour, the large difference in chemical shift of the hydride signals, and the shorter $\mathrm{Pt}-\mathrm{Pt}$
\ddagger Crystal data: $\mathrm{C}_{48} \mathrm{H}_{110} \mathrm{P}_{4} \mathrm{Pt}_{4}(2), M=1591$, orthorhombic, space group Pnam, $a=29 \cdot 730(10), b=16 \cdot 612(7), c=13 \cdot 279(4) \AA$, $U^{+}=6558(7) \AA^{3}, Z=4, F(000)=3080$. Current $R=0.059\left(R^{\prime} 0.064\right)$ for 1899 intensities $[I>3 \sigma(I)]$.

[^1]separations in (2), presumably all consequences of the different numbers of cluster-bonding electrons. Neither compound conforms to the concept of a saturated cluster though this is not unexpected as platinum is known ${ }^{3,5}$ to deviate frequently from the electron-counting rules which prevail in the centre of the transition series.

The results reported here and previously ${ }^{4}$ suggest that
by the judicious choice of phosphine ligand it is possible to synthesize platinum clusters of varying size.
We thank the D.E.N.I. for a studentship (D. G. T.), Drs. R. J. Goodfellow and M. Murray for n.m.r. experiments, and Mr. P. Louca for assistance with data collection.
(Received, 20th July 1981; Com. 868.)
${ }^{1}$ R. Whyman, 'Transition Metal Clusters,' ed. B. F. G. Johnson, Wiley, New York, 1980.
${ }^{2}$ A. P. Humphries and H. D. Kaesz, Prog. Inorg. Chem., 1979, 25, 145.
${ }^{3}$ J. W. Lauher, J. Am. Chem. Soc., 1978, 100, 5305; F. G. A. Stone, Inorg. Chim. Acta, 1981, $50,33$.
${ }^{4}$ D. Gregson, J. A. K. Howard, M. Murray, and J. L. Spencer, J. Chem. Soc., Chem. Commun., 1981,716
${ }^{5}$ M. Green, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1979, 1679.

[^0]: \dagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

 Crystal data: $\mathrm{C}_{36} \mathrm{H}_{87} \mathrm{P}_{3} \mathrm{Pt}_{3}(1), M=1198$, monoclinic, space group $P 2_{1} / n, a=21 \cdot 744(4), b=13 \cdot 516(5), c=15 \cdot 409(11) \AA$, $\beta=102 \cdot 28(4)^{\circ}, U=4425(6) \AA^{3}, Z=4, F(000)=2328$. Current $R=0.073\left(R^{\prime} 0.075\right)$ for 3276 intensities $[I>3 \sigma(I)$, Nicolet P3M diffractometer, Mo- K_{α}].

[^1]: § Crystal data: $\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{P}_{4} \mathrm{Pt}_{4}(3), M=1565,2$ independent molecules per asymmetric unit, orthorhombic, space group Pna2 ${ }_{1}$, $a=17.047(3), b=33.292(17), c=18.741(7) \AA, U=10636(11) \AA^{3}, Z=4, F(000)=5952$. Current $R=0.087\left(R^{\prime} 0.083\right)$ for 5588 intensities $[I>4 \sigma(I)]$.

