Synthesis of a (\boldsymbol{D}_{3})-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C_{3})-Subunit

By Jacqueline Gabard and André Collet*
(Chimie des Interactions Moléculaires, Collège de France, 75005 Paris, France)

Summary $\left(D_{3}\right)$-Bis(cyclotriveratrylenyl) (4), has been synthesized in racemic and optically active forms by stereospecific replication of a $\left(C_{3}\right)$-subunit; the absolute configuration of $(+)-(4)$ was assigned from that of the $\left(C_{3}\right)$-precursor.

Although D_{3} symmetry is readily accessible in octahedral tris(chelate) metal complexes, ${ }^{1}$ organic molecules that belong to this point group are very uncommon. ${ }^{2}$ We report in this
communication the synthesis of $\left(D_{3}\right)$-bis(cyclotriveratrylenyl) (4), a new macrocage in which the chiral D_{3} symmetry arises from the spatial arrangement of six equivalent achiral aromatic residues.

Initial attempts to obtain the key compound $\left(C_{3}\right)$ cyclotriguaiacylene (\pm)-(2e) by acid-catalysed condensation of vanillyl alcohol (1c) only afforded intractable material, presumably owing to the presence of the free phenolic group. In contrast, the phenol-protected derivative (1a) was found

(1)
a; $R=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
b; $R=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$
c; $R=H$

$\mathrm{a} ; R=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{b}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{c} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{d} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$
e; $\mathrm{R}=\mathrm{H}$
to react satisfactorily in $\mathbf{6 5} \%$ perchloric acid, yielding, as expected, ${ }^{3}$ the $\left(C_{3}\right)$-trimer $(\pm)-(\mathbf{2 a})$ as the major product (40%); this triacid was conveniently isolated and characterized (n.m.r.) as its trimethyl ester (2b), m.p. $192{ }^{\circ} \mathrm{C}$. Lithium aluminium hydride reduction in tetrahydrofuran (THF) of (2b) to give (2c), m.p. $218^{\circ} \mathrm{C}$, followed by esterification with methanesulphonyl chloride (pyridine), and conversion of the resulting trimethanesulphonate into the tri-iodide (2d), by treatment with sodium iodide in glyme, proceeded in 75% overall yield. Cleavage of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$ groups in (2d) by reaction with zinc powder in acetic acid afforded the desired $\left(C_{3}\right)$-triphenol, (\pm)-(2e), in 72% yield, as a crystalline solid (m.p. ca. $300^{\circ} \mathrm{C}$, decomp.). The structure of $(\pm)-(\mathbf{2} \mathbf{e})$ was assigned by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra with those of the corresponding enantiomers, previously synthesized by a different route. ${ }^{3,4}$
Reaction of $(\pm)-(\mathbf{2 e})$ with the iodide ($\mathbf{1 b} \mathbf{b})$, m.p. $90^{\circ} \mathrm{C}$, in hexamethylphosphoric triamide (HMPA), using 25% aqueous NaOH as base (24 h ; room temp.), gave the (C_{3})tris(vanillyl alcohol) derivative $(\pm)-(\mathbf{3})$, isolated in 30% yield by t.l.c. (silica gel, ethyl acetate as eluant), as a colourless glass. This product was shown by ${ }^{11} \mathrm{H}$ n.m.r. spectroscopy to adopt the cyclotriveratrylene-like 'crown' conformation usually found in this series, ${ }^{4}$ characterized by the AB n.m.r. quartet of the methylene bridges, at $\delta 3.50$ $\left(\mathrm{H}_{e}\right)$ and $4.73\left(\mathrm{H}_{a}\right), J 14 \mathrm{~Hz}$.

When a $0.8 \times 10^{-3} \mathrm{~m}$ solution of $(\pm)-(3)$ in formic acid was heated at $90{ }^{\circ} \mathrm{C}$ for 30 min , a smooth intramolecular reaction occurred which resulted in the formation of a single product, besides some polymeric material, as shown by analytical t.l.c. and by the n.m.r. spectrum of the crude
mixture; the product, which was assigned structure (4), was isolated in 60% yield by t.l.c. (dichloromethane as the eluant), and was crystallized from ethanol-chloroform yielding solvated crystals \dagger which decomposed above $350^{\circ} \mathrm{C}$ (differential scanning calorimetry). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ consisted of four singlets at $\delta 3.79\left(\mathrm{OCH}_{3}\right), 4 \cdot 16$ $\left(\mathrm{OCH}_{2}\right), 6.67$, and $6.76(\mathrm{ArH})$, together with the AB quartet characteristic of the crown structure at $\delta 3.40$ and 4.60 ; it is interesting that these values are shifted upfield (by ca. 0.15 p.p.m.) with respect to the corresponding resonances in (2e), or in cyclotriveratrylene, ${ }^{4}$ suggesting a mutual interaction between the molecular units. On the other hand, the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of (4) (Table) is very similar to that of ($\mathbf{2 e}$). The structure was confirmed by mass spectrometry: $m / e 894\left[\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}\right)_{6}\right], 863,833,447\left(M^{2+}\right), 364$, 341 , and 163.

Table. ${ }^{13} \mathrm{C}$ N.m.r. data (δ values in p.p.m. with respect to $\mathrm{Me}_{4} \mathrm{Si} ; \mathrm{CDCl}_{3}$ solutions).

	α	β / β^{\prime}	γ / γ^{\prime}	δ / δ^{\prime}	OCH_{3}	R
(2e)	$35 \cdot 2$	$112 \cdot 7$	$130 \cdot 0$	$144 \cdot 2$	$55 \cdot 5$	(OH)
		$115 \cdot 9$	$131 \cdot 8$	$145 \cdot 3$		
(4)	$36 \cdot 1$	$113 \cdot 8$	$131 \cdot 6$	$146 \cdot 6$	$55 \cdot 6$	$69 \cdot 2\left(\mathrm{OCH}_{2}\right)$

None of the foregoing data can provide useful information on the stereochemistry of (4), which may correspond either to an achiral (meso) or to a racemic (\pm) structure, according to whether the newly formed and the original $\left(C_{3}\right)$ ring have opposite or identical chiralities, respectively. In order to investigate this point, we started from the known ${ }^{3,5}$ triphenol $(M)-(+)-(\mathbf{2 e})$ (enantiomeric excess, e.e. $>90 \%)$, which was converted into the optically active $(P)-(-)-(\mathbf{3})$, $[\alpha]^{25}-65^{\circ}$ (chloroform), by using the same conditions as above. Reaction of (-)-(3) in formic acid as described for the racemate similarly afforded a single product, identical (t.l.c., n.m.r.) with the above sample of (4); however, it was optically active, $[\alpha]_{D}^{2 \bar{\sigma}}+180^{\circ}$ (chloroform). This experiment shows that (4) should be assigned the chiral D_{3} structure, or, in other words, that the new ring is formed with the same chirality as the parent $\left(C_{3}\right)$-ring. Inasmuch as we were unable to detect the meso isomer in the reaction mixture, the intramolecular cyclization (3) \rightarrow (4) may be described as an example of stereospecific replication; a somewhat similar process, also virtually stereospecific, has been reported recently in a binaphthyl system. ${ }^{6}$

The ease with which the cyclization proceeds in formic acid is noteworthy; the formation of cyclotriveratrylene rings from appropriate benzylic alcohols usually requires strong acidic conditions [as, for example, the reaction (1a) \rightarrow (2a)]. Although this result certainly illustrates the 'template effect,' the somewhat surprising stereospecificity suggests that the conformational requirement of the $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $\left(\mathrm{OCH}_{3}\right)$ groups governs, to a large extent, the formation of the D_{3} isomer, rather than the meso.
\dagger Elemental analyses are consistent with the formation of a $1: 1$ complex between (4) and CHCl_{3}; the presence of chloroform was also detected by n.m.r. and mass spectrometry.

The absolute configuration of $(+)-(4)$ shown in the structural formula was inferred from that of the starting triphenol ${ }^{5}(M)-(+)-(\mathbf{2 e})$. The optical purity of the sample of $(+)-(4)$ obtained is unknown. The activation parameters for the 'crown-to-crown' interconversion of the precursor $(-)-(3)$ were calculated from its racemization rates at 37 , 46 , and $56{ }^{\circ} \mathrm{C}: E_{\mathrm{a}}=26.5 \mathrm{kcal} / \mathrm{mol}, \ddagger$ with $A=0.5 \times 10^{-13}$. A racemization half-life of $c a .630 \mathrm{~s}$ at $90^{\circ} \mathrm{C}$ can be estimated
from these data. Since the cage (+)-(4), once formed, cannot racemize, the optical purity of the sample (isolated by t.l.c.) should depend on the rate of the conversion (3) \rightarrow (4), which has not been measured.

Studies on the complexing properties, and on the chiroptical properties (c.d.) of (4) are in progress.
(Received, 22nd July 1981; Com. 882.)
$\ddagger 1 \mathrm{cal}=4 \cdot 184 \mathrm{~J}$.
${ }^{1}$ R. Kuroda and S. F. Mason, J. Chem. Soc., Dalton Trans., 1979, 273.
${ }^{2}$ M. Farina, Tetrahedron Lett., 1953, 2097; M. Farina and G. Audisio, Tetrahedron, 1970, 26, 1839; R. K. Hill and D. W. Ladner, Tetrahedron Lett., 1975, 989 ; P. E. Eaton, R. A. Hudson, and C. Giordano, J. Chem. Soc., Chem. Commun., 1974, 978; P. E. Eaton and B. Leipzig, J. Org. Chem., 1978, 43, 2483; W. Spielman, C. Weitemeyer, T.-N. Huang, A. De Meijeire, F. Snatzke and G. Snatzke, Israel J. Chem., 1976/77, 15, 99 ; M. Nakazaki, K. Naemura, H. Chikamatsu, M. Iwasaki, and H. Hashimoto, J. Org. Chem., 1981, 46, 2300.
${ }^{3}$ A. Collet and J. Jacques, Tetrahedron Lett., 1978, 1265.
${ }^{4}$ A. Collet and J. Gabard, J. Org. Chem., 1980, 45, 5400, and references therein.
${ }^{5}$ A. Collet and G. Gottarelli, J. Am. Chem. Soc., 1981, 103, 204; A. Collet, J. Gabard, J. Jacques, M. Cesario, J. Guilhem, and C. Pascard, J. Chem. Soc., Perkin Trans. 1, 1981, 1630.
${ }^{6}$ S. Miyano, M. Tobita, M. Nawa, S. Sato, and H. Hashimoto, J. Chem. Soc., Chem. Commun., 1980, 1233.

