Synthesis of a Potential Synthon for the Chiral Synthesis of the Corynanthe-type Indole Alkaloids: Enantioselective Total Synthesis of (–)-Antirhine

By Selichi Takano,* Nobuhiko Tamura, and Kunio Ogasawara

(Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan)

Summary The chiral formylmethyl(vinyl)tetrahydropyranone (16), a potential versatile synthon for the chiral synthesis of the Corynanthe-type indole alkaloids, has been synthesised and converted into (-)-antirhine, the major alkaloid of Antirhea putaminosa (F. Muell.) Bail.

RECENTLY we established an efficient enantioselective route to the Aspidosperma-^{1,2} and Iboga-type³ indole alkaloids using a chiral lactone⁴ (1) obtained from L-glutamic acid⁵ or D-mannitol.⁶ We report here the enantioselective synthesis of the formylmethyl(vinyl)tetrahydropyranone (16), a potential versatile synthon for the chiral synthesis of the Corynanthe-type indole alkaloids, starting from the same chiral lactone (1), along with the first enantioselective synthesis of an unique Corynanthe variant, (-)-antirhine^{7,8} (19), using the synthon (16) thus obtained.

Cautious alkylation of $(1)^4$ with allyl bromide $(1 \cdot 2 \text{ mol.} equiv.)$ in the presence of lithium di-isopropylamide $(1 \cdot 2 \text{ mol.} equiv.)$

equiv.) in tetrahydrofuran (THF) at -78 °C afforded the (2S)-lactone (2)[†], m.p. 89–90 °C, $[\alpha]_{\rm D}$ +24·8° (c 1·96, CHCl₃) in good yield. Reduction of (2) with LiAlH₄, followed by acid-catalysed detritylation in methanol gave the triol (4)[†], b.p. 180–190 °C (0·35 Torr, Kugelrohr), $[\alpha]_{\rm D}$ -2·5° (c 1·95, CHCl₃), via (3). Periodate cleavage of (4) yielded the epimeric lactol (5)[‡] which on Jones' oxidation gave the lactone (6)[†], b.p. 64–65 °C (0·5 Torr), $[\alpha]_{\rm D}$ +15·0° (c 2·65, CHCl₃), in 50·5% overall yield from (1). Alkylation of (6) with allyl bromide occurred stereoselectively to give the *trans*-diallyl-lactone (7),[†] b.p. 72–73 °C (0·2 Torr), $[\alpha]_{\rm D}$ +19·5° (c 3·00, CHCl₃), in 70% yield. Treatment of (7) with NaCN (1·3 mol. equiv.) in refluxing dimethyl-formamide (DMF)⁹ furnished the cyano-acid (8)[‡] in excellent yield and practically pure.

Exposure of (8) to iodine (2 mol. equiv.) and potassium iodide (6 mol. equiv.) in aqueous NaHCO₃ solution¹⁰ allowed a selective lactonization at the γ -position to give the iodo-lactone (9)⁺ nearly quantitatively. This was then

[†] Satisfactory analytical and spectral (i.r., ¹H-n.m.r., and m.s.) data were obtained for this compound.

[‡] Satisfactory spectral (i.r., ¹H-n.m.r., and m.s.) data were obtained for this compound.

1156

i, LiAlH₄, THF, reflux, then conc. HCl (cat.)-MeOH, room temp.; 1, LIAIH₄, 1HF, reflux, then conc. HCl (cat.)-MeOH, room temp.; ii, NaIO₄, then Jones' reagent; iii, allyl bromide, lithium di-isopropylamide, THF, -78 °C; iv, NaCN, DMF, reflux; v, (a) I₂-KI, aq. NaHCO₃, room temp., (b) aq. KOH, then dil. HCl, (c) aq. KOH, then aq. NaIO₄, (d) NaBH₄, then acid work-up; vi, PhSeNa, THF, reflux, then ClCO₂Et, Et₃N, then NaBH₄; vii, KOH-EtOH, then acid work-up; viii, O₈, CH₂Cl₂, -78 °C to room temp.; ix, tryptamine, NaBH₃CN, aq. MeOH, pH 6, then (Me₂CHCH₂)₂AlH, THF, -78 °C; x, dil. HCl, room temp.

SCHEME

 The synthetic material had $R_{\rm f}$ values and i.r., ¹H-n.m.r., and m.s. data identical to those of the natural product. We are greatly indebted to Professors J. Ficini (Universite Pierre et Marie Curie, Paris), H.-P. Husson and P. Potier (Institute de Chimie des Substances Naturelles, Gif-sur-Yvette), and J. A. Lamberton (CSIRO Chemical Research Laboratories, Melbourne) for generous gifts of natural (-)-antirhine

- ¹ S. Takano, K. Chiba, M. Yonaga, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1980, 616. ² S. Takano, M. Yonaga, and K. Ogasawara, J. Chem. Soc., Chem. Commun., preceding communication.
- ³ S. Takano, M. Yonaga, K. Chiba, and K. Ogasawara, *Tetrahedron Lett.*, 1980, 21, 3697.
 ⁴ S. Takano, M. Yonaga, and K. Ogasawara, *Synthesis*, 1981, 265.
- ⁵ M. Taniguchi, K. Koga, and S. Yamada, Tetrahedron, 1974, 30, 3547.
- ⁶ S. Takano, E. Goto, M. Hirama, and K. Ogasawara, *Heterocycles*, 1981, 16, 381, 951. ⁷ S. R. Johns, J. A. Lamberton, and J. L. Occolowitz, *Aust. J. Chem.*, 1967, 20, 1463.
- ⁸ For a synthesis of racemic antirhine by a fundamentally different approach see S. Takano, M. Takahashi, and K. Ogasawara, J. Am. Chem. Soc., 1980, 102, 4282.
- ⁹ B. Belleau and J. Puranen, Can. J. Chem., 1965, 43, 2551.
- ¹⁰ Cf. M. D. Dowle and D. I. Davies, Chem. Soc. Rev., 1979, 8, 171.
 ¹¹ D. Liotta, W. Markiewicz, and H. Santiesteban, Tetrahedron Lett., 1977, 4365.
- 12 K. Ishizumi, K. Koga, and S. Yamada, Chem. Pharm. Bull., 1968, 16, 492.
- ¹³ H. Iio, M. Isobe, T. Kawai, and T. Goto, Tetrahedron, 1979, 35, 941.

J.C.S. CHEM. COMM., 1981

converted into the cyano-lactone (12)[†], b.p. 145-150 °C (0.2 Torr, Kugelrohr), $[\alpha]_{D} + 2.2^{\circ}$ (c 2.95, CHCl₃), in 79% overall yield from (7) via (9), ‡ (10), ‡ and (11). ‡ Reaction of (12) with sodium phenyl selenide,¹¹ prepared in situ from diphenyl diselenide and sodium metal, in refluxing THF yielded the acid (13)[±] whose carboxy-group was selectively reduced via the mixed anhydride method¹² to give the primary alcohol (14)[‡]. This could be used without further purification and was hydrolysed and worked up with acid to give the δ -lactone (15), b.p. 195–200 °C (0.2 Torr, Kugelrohr), $[\alpha]_D$ $-19\cdot5^\circ$ (c 3.65, CHCl_3), in 79% overall yield from (12). Ozonolysis of (15) in methylene chloride (-78 °C), followed by treatment of the reaction mixture with Et_3N^{13} (-78 °C to room temperature), furnished the formylmethyl derivative (16), $[\alpha]_D + 1 \cdot 1^\circ$ (c 1.68, CHCl₃) in 61.5% yield by simultaneous double bond fission and double bond formation. The overall yield of (16) from the chiral lactone (1) was 14%.

The potential of (16) as a synthon for the chiral synthesis of the Corynanthe-type indole alkaloids was demonstrated by its conversion into an unique Corvnanthe variant. (-)antirhine (1), previously isolated from Antirhea putaminosa (F. Muell) Bail. by Johns et al.⁷ Reductive condensation of (16) with tryptamine using sodium cyanoborohydride at pH 6 in aqueous methanol yielded the lactam (17)[‡] via spontaneous cyclization. Partial reduction of (17) with di-isobutylaluminium hydride at -78 °C gave the hemiacetal (18)[‡] which, without purification, was treated with dil. HCl at room temperature overnight to furnish (-)-antirhine§ (19), (c.d. $\Delta \epsilon_{256} + 0.77$, $\Delta \epsilon_{293} + 0.36$, CHCl₃; natural anti-rhine, $\Delta \epsilon_{265} + 1.44$, $\Delta \epsilon_{293} + 0.96$, CHCl₃).

Although the present report is limited to the synthesis of (-)-antirhine, the formylmethyl(vinyl)tetrahydropyranone (16) will undoubtedly serve as the chiral synthon for a large number of Corynanthe-type indole alkaloids.

(Received, 7th August 1981; Com. 960.)