E.S.R. Spectra and Reactivity of Alane Radical Anions in Solution

By JEREMY R. M. GILES and BRIAN P. ROBERTS*

(Christopher Ingold Laboratories, University College London, 20, *Gordon Street, London* WClH OA J)

Summary The structures and reactions of $H₃Al-^-$ and $(Bu^tO)₃Al-$, generated by abstraction of hydrogen from H_4 Al⁻ and $(Bu^tO)₃$ AlH⁻, respectively, have been investigated in solution using e.s.r. spectroscopy.

ALTHOUGH lithium aluminium hydride is widely employed for the reduction of a variety of organic compounds, relatively little is known about the mechanisms of these reactions. The hydridoaluminates are usually considered to transfer nucleophilic hydrogen heterolytically to the substrate, but recent results suggest the involvement of free radicals in the reductions of certain organic halides, ketones, and polynuclear arenes by simple and complex metal hydrides. $1,2$

Consideration of possible radical chain mechanisms, with propagation steps shown in equations (1) and (2) (substitution) or (3) and (4) (addition), for reduction by hydridoaluminates, led us to examine the generation and reactivity of alane radical anions (X_3Al-) in solution using e.s.r. spectroscopy.

$$
X_3AI - Y - Z \rightarrow X_3AIY + Z.
$$
 (1)

$$
Z \cdot + \text{HAIX}_3 \rightarrow ZH + X_3 \text{Al} \cdot \text{-}
$$
 (2)

$$
X_3 Al - + Y = Z \rightarrow X_3 AlY - Z.
$$
 (3)

$$
X_3 A IY - Z \cdot + HAIX_3 \rightarrow X_3 A IY - ZH + X_3 A I \cdot \tag{4}
$$

U.V. photolysis of a tetrahydrofuran (THF) solution containing di-t-butyl peroxide (15% v/v) and tetra-n-butylammonium tetrahydroaluminate *(ca.* 0.3 M) at **180-295** K gave rise to an e.s.r. spectrum (see Figure) which we assign

TABLE. E.s.r. parameters for alane radical anions.

			Hyperfine splittings/G	
Radical	T/K	g-Factor ^a	$a(^{27}\text{Al})^{\text{a}}$	$a(H \text{ or } D)$
$HsAl-$	230	2.0025	$(+) 154.2b$	$7.0~(3H)^{b}$
$DsAl-$	230	2.0025	$(+) 152.2$	1.05(3D)c
$(ButO)$, Al $-$	230	2.0015	$(+)$ 300.7 ^d	
$H.Si \cdot e$	203	2.0032	$(-) 182t$	$(+)$ 7.84 $(3H)$ 8

* Calculated from resonance fields and microwave frequencies by exact solution of the isotropic Hamiltonian using the program
ESRLSQ written by Dr. K. F. Preston (D. Griller and K. F.
Preston, J. Am. Chem. Soc., 1979, 101, 1975). b d |a(Al)|/dT –
28, d |a(3H)|/dT – 4 mG K-1 for the calculations (ref. **7).**

 \dagger The natural abundance of ²⁷Al *(I 5/2)* is 100 %.

FIGURE. E.s.r. spectrum of H₃Al⁻ obtained during continuous photolysis **of** a THF solution containing ButOOBut and Bun4NA1- H_4 at 235 K. The broad peak marked with an asterisk is a permanent background signal from the spectrometer cavity.

to the alane radical anion, H_aAl -, formed by abstraction of hydrogen from H_4 Al⁻ [equations (5) and (6)].³[†]

$$
B\mathbf{u}^{\dagger}\mathbf{O}\mathbf{O}B\mathbf{u}^{\dagger}\rightarrow 2\mathbf{B}\mathbf{u}^{\dagger}\mathbf{O}\cdot\tag{5}
$$

$$
ButO+H4Al- \to H3Al-^{}+ ButOH
$$
 (6)

A similar e.s.r. spectrum was obtained in THF when the tetrabutylammonium salt was replaced by LiAlH₄, although with the lithium counter-ion only the $M_1(^{27}\text{Al}) - 1/2$ quartet with the lithium counter-ion only the M_1 ⁽²⁷Al) $-1/2$ quartet was well resolved.[†] However, in the presence of 12-crown-4 (which is known to complex Li^{+} strongly) the spectrum was very similar to that obtained from the tetrabutylammonium salt. The trideuterioalane radical anion was generated similarly from $\text{Bu}^n_4\text{NAlD}_4.$

The tri-t-butoxyalane radical anion was produced in an analogous way by the abstraction of hydrogen from Li(ButO),AlH [equation **(7)]** in diglyme-dimethyl ether (1: **¹v/v)** and the e.s.r. parameters of this and the other alane radical anions are given in the Table.

$$
Bu†O + (Bu†O)3AlH \rightarrow (Bu†O)3Al-– + Bu†OH (7)
$$

The ²⁷Al splitting constant reported here for H_A Al \cdot does not agree with that (223 G at **77** K) derived from a spectrum, detected previously in the solid state after γ -irradiation of LiAlH₄ or NaAlH₄, also assigned to this radical anion.⁴

\$ This differential linewidth effect is probably related to ion association phenomena.

Comparison of our value with that calculated for unit population of the A1-3s orbital (985 **G)5** shows that the semi-occupied orbital in $H₃Al-⁻$ has *ca.* 16% Al-3s character. The corresponding Si-3s population in the isoelectronic silyl radical H₃Si - is 15% (see Table),⁶ indicating a similar deviation from planarity for both radical^.^ The magnitudes of $a(3H)$ are also similar for both radicals, although the signs have not been determined experimentally.

The ²⁷Al splitting for $(Bu^tO)₃Al-$ is appreciably larger than that for H_aAl- and corresponds to an Al-3s population of *ca.* 31% . Replacement of H by the more electronegative ButO-group, which also has non-bonding electrons on oxygen, 8a would be expected to induce increased deviation from planarity at Al.⁸ The value of $a(^{27}$ Al) derived from a spectrum attributed⁹ to Me₃Al-⁻ in the solid state (324 G) is surprisingly close to our value for $(Bu^tO)₃Al-$ and it is clearly important to obtain isotropic spectra of alane radical anions with a variety of ligands in order to investigate substituent effects on structure.

We are now undertaking a detailed study of the reactions of alane radical anions in solution and some preliminary results are given here. Photolysis at *205* K of a THF solution containing Bu^tOOBu^t, Buⁿ₄NAIH₄, and a propyl halide afforded the e.s.r. spectrum of the propyl radical rather than that of H₃Al⁺⁻, implying that reaction (8; X = Cl, Br, or I) proceeds rapidly at low temperatures.§ Similar reactivity was shown by $(Bu^tO)₃Al-$. -

$$
\mathrm{H}_{3}\mathrm{Al}\cdot^{-}+\mathrm{Pr}^{n}\mathrm{X}\rightarrow\bar{\mathrm{H}_{3}\mathrm{Al}}\mathrm{X}+\mathrm{Pr}^{n}\text{.} \tag{8}
$$

E.s.r. experiments have also shown that H_3 Al-- adds readily to ethylene to give a β -substituted ethyl radical

 $[a(2\mathrm{H}_{\alpha}) \ \ 17\cdot 0, \P \ \ a(2\mathrm{H}_{\beta}) \ \ 15\cdot 6, \P \ \ a(^{27}\mathrm{Al}) \ \ 50\cdot 7, \ \ a(3\mathrm{H}) \ \ 2\cdot 8 \ \mathrm{G} \, ;$ *g* **2.0026** at **208** K]. The hyperfine splitting constants indicate that the most stable conformation of the adduct is the 'eclipsed' structure **(l),** although there could be significant distortion from this idealised structure and the aluminium atom could be displaced toward the bridging position. Addition to benzene affords the cyclohexadienyl radical (2) $[a(1H) 29.4, a(27Al) 53.7, a(3H) 1.6, a(2H_o) 6.3,$ $a(2H_m)$ 1.4, $a(1H_n)$ 10.9 G; g 2.0027 at 253 K]. Deuteriumlabelled analogues were generated to confirm the analyses of the e.s.r. spectra.

The alane radical anion thus resembles H_aB- and H_aSi in its properties.³

We are very grateful to Dr. K. F. Preston (N.R.C. Ottawa) for providing us with a copy of his computer program ESRLSQ and to Dr. J. E. Parkin (U.C.L.) for adapting this program to run on the University of London CDC 7600 computer.

(Received 3rd August, 1981; *Corn.* **930.)**

*⁵*These reactions may be better regarded as electron-transfer processes rather than halogen-atom abstractions.

Tentatively assigned on the basis of their temperature dependences; d $|a(2H_\alpha)|/dT$ *ca.* 0, d $|a(2H_\beta)|/dT = +5 \text{ mG K}^{-1}$. The 27Al splitting was essentially independent of temperature.

¹S.-K. Chung and F. Chung, *Tetrahedron Lett.,* **1979, 2473;** S.-K. Chung, *J. Org. Chem.,* **1980, 45, 3513.**

- **²**E. C. Ashby, A. B. Goel, and R. N. DePriest, *J. Am. Chem. SOG.,* **1980, 102, 7779;** E. C. Ashby, A. B **H.** S. Prasad, *ibid.,* **1981, 103, 973;** E. C. Ashby, R. N. DePriest, and A. B. Goel, *Tetrahedron Lett.,* **1981,** A. B. Goel. *ibid..* **1981, 22, 1879.** Goel, R. N. DePriest, and **22, 1763;** E. C. Ashby and
- **3** J. R. M. Giles and B. P. Roberts, *J. Chem. Soc., Chem. Commun.,* **1981, 360,** and unpublished results.

4 R. C. Catton and M. C. R. Symons, *J. Chem. Soc. A,* **1969, 2001. ⁵**P. W. Atkins and M. C. R. Symons, 'The Structure of Inorganic Radicals,' Elsevier, Amsterdam, **1967.**

LI T. Katsu, Y. Yatsurugi, M. Sato, and *Y.* Fujita, *Chem. Lett.,* **1975, 343.**

-
- 7. Harone, J. Douady, Y. Ellinger, R. Subra, and F. Pauzat, *Chem. Phys. Lett.*, 1979, 65, 542.
⁸ (a) P. J. Krusic and R. C. Bingham, *J. Am. Chem. Soc.*, 1976, 98, 230; (b) L. Pauling, *J. Chem. Phys.*, 1969, 51, 2767.

-