Stable Isotope Studies of the Biosynthesis of the Sesquiterpenoid Dihydrobotrydial

By A. PETER W. BRADSHAW and JAMES R. HANSON*

(School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9Q J)

and IAN H. **SADLER**

(Department of *Chemistry, University of Edinburgh, West Mains Road, Edinburgh* EH9 **3** J J)

Summary The pattern of incorporation of [4-2H,4-13C] mevalonic acid and H₂¹⁸O into dihydrobotrydial has confirmed that there is a 1,3-hydride shift in the biosynthesis of this metabolite and that there is a discharge of the C(9) carbocation by hydration.

¹³C N.M.R. studies have shown¹ that the sesquiterpenoid phytotoxic metabolites of *Botrytis cinerea* such as dihydrobotrydial **(3)** are formed by folding farnesyl pyrophosphate

(2) as in the Scheme. Recently we used the 2H n.m.r. spectrum of the methyl ester of botryaloic acid, a cometabolite of dihydrobotrydial derived biosynthetically from $[4-2H_2, 4-13C]$ mevalonate (1), to establish that a 1,3hydrogen shift from C(9) to C(2) occurs during the biosynthesis. This led to a proposed biosynthetic pathway for dihydrobotrydial **(3)** as shown in the remainder of the Scheme. We have now been able to examine this further by using both the **2H** and l3C n.m.r. spectra of the ethyl

SCHEME. $PP = pyrophosphate$.

ethers **(4)** and *(5),* derived chemically from biosynthetically enriched dihydrobotrydial. Careful spin decoupling studies at 360 MHz enabled the well resolved ¹H n.m.r. signals of the acetate **(4),** and hence of the corresponding 4-alcohol *(5),* to be assigned. The dihydrobotrydial from a second experiment with $[4-2H_2, 4-13C]$ mevalonate (1) was converted into the ethyl ether **(4)** by treatment with ethanol in chloroform containing a trace of toluene-p-sulphonic acid and then the acetoxy-group was hydrolysed with methanolic potassium carbonate to afford (5). The ²H n.m.r. spectrum comprised a singlet at δ 1.7 corresponding to H(2) and doublets (*J ca.* 20 Hz) centred on δ 1.5 corresponding to $H(1)$ and $H(5)$. The ¹³C n.m.r. spectrum of the alcohol contained small triplet signals at δ 63.2 *(J* 20 Hz), 0.6 p.p.m. upfield from the signal at δ 63.8 assigned to C(5), and at δ 54.1 (*J* 19 Hz), 0.5 p.p.m. upfield from the signal at δ 54.9 assigned to C(1). The signal at δ 82.4, assigned to $C(9)$ was enriched. Thus the $[4-2H, 4-13C]$ mevalonate labels at $C(1)$ and $C(5)$ have remained attached whilst the [4-²H]mevalonoid label, originally at $C(9)$, has migrated to $C(2)$ as required by the biosynthetic scheme.

Implicit in this scheme is the fact that the oxygen atom of the tertiary alcohol at C(9) originates from water. In a normal hydroxylation it would come from aerial oxygen. The discharge of a 'carbocation' in biosynthesis by hydration, although a feature of a number of other sesquiterpenoid biosynthetic schemes, has rarely been established experimentally.' We have now confirmed the origin of medium (ca. 12% ¹⁸O). The dihydrobotrydial (3) was isolated and in order to remove any possible ambiguity concerning the origin of the hemi-acetal oxygen, it was converted into the ethyl ether **(4).** Although the ethyl ether does not show a molecular ion in the electron-impact mass spectrum, it shows ions corresponding to $(M - E_tO)^+$ and $(M - \text{EtOH})^{+}$ (C₁₇H₂₇O₄ requires 295.191, found 295.190; $C_{17}H_{26}O_4$ requires 294.183, found 294.182). The labelled material contained ions at 297 and 296 a.m.u. $(C_{17}H_{26}^{16}O_3^{18}O$ requires 296.187, found 296.187). The relative intensities of these ions were measured (see Table)

TABLE. Incorporation of ¹⁸O into dihydrobotrydial ethyl ether.⁸

	Mean intensity b	
	Ion/a.m.u. Unlabelled sample	Labelled sample
294	74	72.04 $(M-EtOH)$ +
295	100.0c	100.0 $(M - EtO)^+$
296	16.90	$29 - 61$
297	1.35	$19-71$

a¹⁸O content based on the $(M-EtOH)^+$ ion = 15.47%; ¹⁸O content based on the $(M - EtO)^+$ for $M = 15.5\%$. $\frac{6.56}{31}$ Mean of 31 determinations, we thank Mr. A. Greenway for these. c Normalized.

revealing an enrichment with ¹⁸O. The ethyl ether also shows ions at 262 and 263 a.m.u. corresponding to the loss of H_2O and $CH_3CO_2(H)$. Comparison of the ions of 262-265 a.m.u. between the labelled and unlabelled samples showed no significant incorporation of ¹⁸O confirming the anticipated location of the label at C(9). The stereochemistry of the oxygen atom at $C(9)$ is *trans* to the hydrogen atom at C(2) and this would be in accord with an inversion of configuration at $C(9)$ as a consequence of this rearrangement and hydration.

(Received, 18th August 1981; *Cow.* 1011.)

¹J. R. Hanson and R. Nyfeler, *J. Chem. SOC., Chem. Commun.,* 1976, 72; A. P. W. Bradshaw, J. R. Hanson, and M. Siverns, *ibid.,* 1977, 819.

²H.-W. Fehlhaber, R. Geipal, H.-J. Mercker, R. Tschesche, and **K.** Welmar, *Chem. Ber.,* 1974, **107,** 1720; H. J. Linder and B. von Grosse, *ibid.,* 3332.

³A. P. W. Bradshaw, J. R. Hanson, R. Nyfeler, and I. H. Sadler, *J. Chem. SOC., Chem. Commun.,* 1981, 649.

For a recent example see: D. E. Cane, R. Iyengar, and M. S. Shiao, *J. Am. Chem. Soc.,* 1981, **103,** 914.