Synthesis and Properties of Substituted Ruthenium Aqua Complexes

By PAUL BERNHARD, HANS LEHMANN, and ANDREAS LUDI* (Institut für Anorganische Chemie, Universität Bern, CH-3000 Bern 9, Switzerland)

Summary $[\operatorname{Ru}(\operatorname{H}_2O)_6]^{2+}$ is a versatile reagent for the facile synthesis of a variety of complexes $[\operatorname{Ru}(\operatorname{H}_2O)_n \operatorname{L}_{6-n}]^{2+}$ (L = heterocyclic N-donor) whose spectroscopic and electrochemical properties are described.

THERE exist only a few studies on ruthenium aqua ions¹ in contrast with the vast amount of data for complexes with nitrogen donors.² In particular, ruthenium aqua ions have not been employed so far as reagents in preparative chemistry. In order to isolate a solid salt of $[Ru(H_2O)_6]^{2+}$, we have modified the original preparative procedure^{1b} by using Pb instead of Sn as reducing agent, the resulting Pb²⁺ being removed by Na₂SO₄. This solution was loaded on to a Dowex 50 W column, and $[Ru(H_2O)_6]^{2+}$ was eluted with 1 M toluene-p-sulphonic acid (H tos). Rotatory evaporation of the resulting solution under reduced pressure at 35 °C produced pink crystals of $[Ru(H_2O)_6][tos]_2$.³ All operations were carried out under argon. The availability of a solid salt of the aqua ion opens facile and efficient synthetic routes to a variety of ruthenium complexes, the nitrogen heterocycles playing a dominant role as substituting ligands. Complexes $[Ru(H_2O)_nL_{6-n}]^{2+}$ (cf. Scheme) were obtained by the reaction under argon at 50 °C of ca. 0.1 M aqueous

SCHEME. Syntheses of $[\operatorname{Ru}(\operatorname{H}_2O)_n \operatorname{L}_{\mathfrak{6}-n}]^{2+}$ from $[\operatorname{Ru}(\operatorname{H}_2O)_{\mathfrak{6}}]^{2+}$ (py = pyridine; pyr = pyrazine; paz = pyridazine; Mepyr = Nmethylpyrazinium; bim = 2,2'-bi-imidazole).

 $[Ru(H_2O)_6][tos]_2$ with the appropriate ligand L in stoicheiometric ratio or in tenfold excess for the preparation of $[RuL_{6}]^{2+}$. Ethanol was added if necessary to produce a homogeneous reaction mixture. The complexes were precipitated as crystalline solids by adding tos-, BF₄, or $S_2O_6^{2-}$. Elemental analyses were in excellent agreement with the given stoicheiometries.

The dominant spectroscopic feature of the complexes with mixed water-N-heterocyclic ligands (cf. Table) is an intense absorption band in the visible region assigned to a $t_{2g} \rightarrow \pi^*$ charge transfer. The disubstituted complexes are very readily formed, probably because water is a better leaving group than ammonia. We assume trans-geometry for the 4:2 composition since only one charge-transfer band is observed. Moreover, the use of $[Ru(H_2O)_6]^{2+}$ as reagent affords a very easy access to the $[RuL_6]^{2+}$ species (L = py, pyr, or paz). Only the hexakispyridine complex had previously been described with a rather difficult procedure for its preparation.⁴ The formal reduction potentials listed in the Table are estimated from cyclic voltammograms. For all the compounds $[Ru(H_2O)_nL_{6-n}]^{2+}$ the potentials are considerably more positive compared with $[Ru(H_2O)_6]^{2+}$, thus demonstrating the stabilization of two-valent ruthenium by π -acids.

		E/V
Complex	$\lambda_{\max}/nm \ (\epsilon_{\max})$	(vs. N.H.E.)ª
(1) (2)	$529 (10.5); 386 (14.4)^{b}$ $390 (30.2)^{b}$	0·205 b
(3)	372 (9,500); 240 (8,500)°	0.42 b
(4)	353 (16,200); 240 (13,800)°	0·73 b
(5)	$345(24,000); 243(26,900)^d$	1.27 e
(6)	436 (13,300); 250 (13,300)°	0·44 f
(7)	$369(20,400); 250(27,800)^{\circ}$	1.48 e
(8)	381 (33,000); 233 (14,100)°	1.35 e
(9)	527 (7,100); 267 (7,600)°	0.80 р
(10)	396 (10,700); 279 (40,000)°	0·44 e

^a N.H.E. = normal hydrogen electrode. Calibration potentials: 0.05 V for Ru(NH₃)^{3+/2+} (H. S. Lim, D. J. Barcley, and F. C. Anson, *Inorg. Chem.*, 1972, **11**, 1460); 1.05 V for Fe(bpy)^{3+/2+} (bpy = 2,2'-bipyridine: C. T. Lin, W. Böttcher, M. Chou, and N. Sutin, *J. Am. Chem. Soc.*, 1976, **98**, 6536). ^b 0.5 M H₂SO₄. ^c H₂O. ^d MeCN. ^e MeCN, 0.1 M [Bu₄N][PF₆]. ^f H₂O, 0.1 M [NH₄][PF₆].

We thank Dr. H. Wagner, CIBA-GEIGY, for the elemental analyses. This work was supported by the Swiss National Science Foundation.

(Received, 7th August 1981; Com. 964.)

¹ (a) E. E. Mercer and R. R. Buckley, *Inorg. Chem.*, 1965, **4**, 1692; (b) T. W. Kallen and J. E. Earley, *ibid.*, 1971, **10**, 1149; (c) W. Böttcher, G. M. Brown, and N. Sutin, *ibid.*, 1979, **18**, 1447: (d) Z. Harzion and G. Navon, *ibid.*, 1980, **19**, 2236. ² F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 4th edn., Wiley-Interscience, New York, 1980, p. 920. ³ The crystal structure of [Ru(H₂O)₆][tos]₂ has been reported by P. Bernhard *et al.*, Proceedings of the International Conference on the Chemistry of the Platinum Group Metals, Bristol, 1981, C16. ⁴ L. L. Templeton *I. Am. Chem. Soc.* 1970, **101**, 4006

⁴ J. L. Templeton, J. Am. Chem. Soc., 1979, 101, 4906.