Journal of

The Chemical Society,

Chemical Communications

NUMBER 7/1981

A New Bridging Geometry for Sulphur Dioxide in [Mo(CO)₂(PPh₃)-(pyridine)(μ-SO₂)]₂·2CH₂Cl₂; X-Ray Crystal Structure

By GORDON D. JARVINEN,* GREGORY J. KUBAS, and R. R. RYAN (Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545)

Summary In CH₂Cl₂ solution the complex *cis,trans*-Mo(CO)₂(PPh₃)₂(pyridine) (η^2 -SO₂) (1) reacts to give a dinuclear complex (2); an X-ray crystal structure determination shows that the molybdenum atoms are bridged by two SO₂ ligands that are co-ordinated to one metal through the sulphur atom and one oxygen atom and to the second metal *via* the remaining oxygen atom.

ALL the X-ray structure determinations so far reported of complexes containing one or more bridging SO₂ ligands show SO₂ bonding to two metal atoms through the sulphur atom.¹ We have obtained the dinuclear complex [Mo(CO)₂(PPh₃)-(pyridine)(μ -SO₂)]₂·2CH₂Cl₂ (**2**) and have established its molecular structure by single-crystal X-ray methods. The complex exhibits a new bridging geometry for SO₂ that is also the first example of metal co-ordination of all three of its atoms.

Addition of SO₂ to the complex cis, trans-Mo(CO)₂(PPh₃)₂-(MeCN)₂ yields cis, trans-Mo(CO)₂(PPh₃)₂(MeCN)(η^2 -SO₂).² The co-ordinated acetonitrile of this complex can be replaced by other ligands giving cis, trans-Mo(CO)₂(PPh₃)₂(SO₂)L in which the bonding mode of the SO₂ (η^1 -planar or η^2) varies with L.² For L = pyridine an η^2 -SO₂ complex (1) is obtained, but (1) is unstable in CH₂Cl₂ solution, losing PPh₃ and forming crystals of (2) in about an hour at room temperature. The i.r. spectrum (Nujol mull) of (2) shows v(CO) bands at 1937 and 1788 cm⁻¹ and v(SO₂) bands at 1043 and 919 cm⁻¹. The position of the low-energy S-O stretch is similar to that for other η^2 -SO₂ complexes of Mo [the parent complex (1) shows v(SO₂) at 1130 and 905 cm⁻¹], but the high-energy band is at least 60 cm⁻¹ below that for other Mo η^2 -SO₂ complexes.^{2,3} This provided the first indication that co-ordination of the terminal oxygen of the η^2 -SO₂ was occurring and led us to undertake a single-crystal X-ray diffraction study of (2).

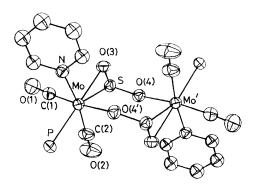


FIGURE. X-Ray structure of $[Mo(CO)_2(PPh_3)(pyridine)(\mu-SO_2)]_2$ -2CH₂Cl₂; hydrogen atoms, phenyl rings, and CH₂Cl₂ of solvation have been omitted for clarity. Primed and unprimed atoms are related by the centre of symmetry. Distances and angles: Mo-C(1) 1.894(9), Mo-C(2) 1.994(10), Mo-P 2.528(2), Mo-N 2.287-(6), Mo-O(3) 2.192(5), MO-S 2.419(2), Mo-O(4') 2.239(5), S-O(3) 1.523(6), S-O(4) 1.500(5), C(1)-O(1) 1.175(10), C(2)-O(2) 1.156(10), Mo-Mo' 4.561(1) Å; C(1)-Mo-C(2) 87.4(4). C(1)-Mo-(P) 93.4(3), C(1)-Mo-N 90.7(3), C(1)-Mo-O(3) 93.8(3), C(1)-Mo-S 88.8(3), C(1)-Mo-O(4') 1.71.7(3), Mo-S-O(4) 116.2(2), O(3)-S-O(4) 111.7(3), S-O(4)-Mo' 140.0(3)°.

Crystal data: $C_{50}H_{40}Mo_2N_2O_8P_2S_2\cdot 2CH_2Cl_2$, triclinic, space group $P\overline{1}$ with a = 14.833(4), b = 9.264(2), c = 10.808(2)Å; $\alpha = 93.13(2)$, $\beta = 98.23(2)$, $\gamma = 110.54(1)^\circ$; Z = 1. The structure was solved by Patterson and difference Fourier techniques and refined to an unweighted R value of 0.064 for 3281 independent reflections. The octahedral coordination around the molybdenum atoms is shown in the Figure with selected distances and angles.[†] The SO₂ ligands are seen to bridge the molybdenum atoms by bonding to one metal through an η^2 -S,O linkage and to the second metal through the other oxygen atom. As found for the analogous bond in other η^2 -SO₂ complexes, the S-O(3)bond (1.52 Å) is lengthened relative to the S-O bonds in solid SO₂ (1.43 Å),⁴ bridging SO₂ complexes (1.45-1.48 Å),¹ or η^{1} planar SO₂ complexes (1.36—1.47 Å)^{2,5} indicating a significant decrease in the S-O(3) bond order. Apparently, coordination of O(4) to the second Mo also lengthens the S-O(4) bond relative to terminal S-O linkages in η^2 -SO₂ complexes (1.43-1.46 Å). The Mo-O(4) bond is nearly in the O(4)-S-O(3) plane and the Mo-O(4)-S angle is 140°. This closely resembles the SO₂ co-ordination geometry in the only structurally characterized O-bonded SO₂ complex, $SbF_5 \cdot SO_2$, where the Sb atom lies in the SO_2 plane and the Sb-O-S angle is 139° .⁶ The O(4)-S-O(3) angle of 112° and the dihedral angle between the SO₂ and Mo-O-S planes of 97.5° are similar to those found for previously structurally

characterized $\eta^2\text{-}\mathrm{SO}_2$ complexes.³ The $\eta^2\text{-}\mathrm{S},\mathrm{O}$ bond is oriented to place the sulphur atom near the better π acceptor ligand (CO vs. pyridine) as observed in other structures of η^2 -SO₂ complexes.³ The structure indicates that rearrangement of the co-ordination geometry occurs in addition to phosphine loss during the formation of (2) from (1). The η^2 -S,O bond is *trans* to a carbonyl in (1) but in (2) is trans to PPh3.

Reaction of excess of pyridine with (2) at room temperature does not cleave the SO₂ bridge, but results in substitution of the PPh₃ with pyridine. The formation of (2) by displacement of PPh_3 and the apparent stability of the SO, bridge in the presence of excess of pyridine indicate that the terminal oxygen of an η^2 -SO₂ ligand can possess considerable basicity, a feature we hope to exploit in further reactions of η^2 -SO₂ complexes.

This work was performed under the auspices of the U.S. Department of Energy.

(Received, 30th October 1980; Com. 1172.)

† The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

¹G. J. Kubas, Inorg. Chem., 1979, 18, 182, and references therein; M. Cowie and S. K. Dwight, ibid., 1980, 19, 209; N. J. Taylor, M. S. Arabi, and R. Mathieu, ibid., p. 1740.

² G. J. Kubas, G. D. Jarvinen, and R. R. Ryan, submitted for publication.

³ G. J. Kubas, R. R. Ryan, and V. McCarty, Inorg. Chem., 1980, 19, 3003.

⁴ B. Post, R. S. Schwartz, and V. McCarty, *Inorg. Chem.*, 1950, 19, 3063.
⁴ B. Post, R. S. Schwartz, and I. Fankuchen, *Acta Crystallogr.*, 1952, 5, 372.
⁶ R. R. Ryan and G. J. Kubas, *Inorg. Chem.*, 1978, 17, 637; I. Ghatak, D. M. P. Mingos, M. B. Hursthouse, and K. M. A. Malik, *Transition Met. Chem.*, 1979, 4, 260; P. Conway, S. M. Grant, A. R. Manning, and F. S. Stephens, *J. Organomet. Chem.*, 1980, 186, C61; D. C. Moody and R. R. Ryan, *Inorg. Chem.*, 1979, 18, 223; D. C. Moody, R. R. Ryan, and A. C. Larson, *ibid.*, p. 227.

⁶ J. W. Moore, H. W. Baird, and H. B. Miller, J. Am. Chem. Soc., 1968, 90, 1358.