Facile δ -Hydrogen Abstraction from a Ruthenium Complex; Possible 1—4 η -Bonding of the o-Xylylene Ligand

By S. DAVID CHAPPELL and DAVID J. COLE-HAMILTON

(Department of Inorganic, Physical and Industrial Chemistry, Liverpool University, P.O. Box 147, Liverpool L69 3BX)

Summary Reaction of $RuCl_2L_4$ (L = PMe_2Ph or PMePh₂) with o-MeC₆H₄CH₂MgBr in diethyl ether at room tem-

perature leads to $\operatorname{Ru}(\operatorname{CH}_2\operatorname{C}_6\operatorname{H}_4\operatorname{CH}_2)\operatorname{L}_3$, whose spectroscopic and chemical characteristics suggest a possible $1-4\eta$ -bonding of the *o*-xylylene ligand.

ALKYL complexes of transition metals decompose either via reductive elimination or by hydrogen abstraction giving an alkane. We have recently reported¹ a rare example in which hydrogen abstraction occurs from a δ -carbon atom; the platinum-containing product contains a 2,3-benzoplatinacyclopentene ring, and very forcing conditions (refluxing xylene; 16 h) were required to effect the transformation. We now report that a similar reaction occurs for ruthenium but that the δ -hydrogen abstraction is so facile that even at room temperature we have been unable to isolate the presumed dialkyl intermediate.

A similar marked difference in reactivity between ruthenium² and platinum³ has been observed in the formation of analogous metallacyclobutane complexes from neopentyl derivatives.

Reaction of RuCl_2L_4 (L = PMe_2Ph or PMePh₂), obtained by metathetical exchange of L with $\text{RuCl}_2(\text{PPh}_3)_3$ in hexane at room temperature,⁴ with *o*-MeC₆H₄CH₂MgBr in ether at room temperature affords yellow solutions from which crystals of Ru(CH₂C₆H₄CH₂)L₃† (L = PMe₂Ph, yellow; L = PMePh₂, orange) may be isolated. The mass spectra of these complexes show parent ions at 620 and 806 a.m.u. (based on ¹⁰²Ru), respectively, together with fragmentation patterns showing loss of the phosphine groups and of the C₈H₈ moiety.

From the ¹H n.m.r. spectra of Ru(CH₂C₆H₄CH₂)(PMe₂-Ph)₃ it is clear that the methyl groups on P_A are diastereotopic and give rise to two doublets at δ 1·21 and 1·29 $(J_{PH}+J_{PH'}, 5 \text{ Hz})$, whilst those on P_B give a doublet at δ 1·73 $(J_{PH}, 7 \text{ Hz})$. The methylene groups give two doublets of doublets at $\delta - 0.16$ $(J_{PH}, 8 \text{ Hz})$ and 1.9 $(J_{PH}, 6 \text{ Hz})$. Decoupling studies show that the two methylene groups are chemically equivalent but that the lack of a plane of symmetry coincident with the plane of the ring causes the two hydrogen atoms on each methylene group to be non-equivalent; thus $J_{HH} = 4 \text{ Hz}$. The ¹H n.m.r. spectrum of

 $\dot{Ru}(CH_2C_6H_4\dot{C}H_2)(PMePh_2)_3$ is qualitatively similar except that only two signals are observed from the phosphine methyl groups: $\delta 2.22$ (d, $J_{PH} 6 Hz$) and 1.7 (d, with some

[†] Satisfactory analyses have been obtained for both complexes.

intensity between the lines). The methylene groups again give rise to two doublets of doublets, $\delta 0.63$ ($J_{PH} 8$ Hz) and 1.99 $(J_{PH} 6 \text{ Hz}); J_{HH} = 4 \text{ Hz}.$

These n.m.r. data could qualitatively be accounted for assuming a five-co-ordinate structure as shown in Figure 1(a). Such a five co-ordinate complex should readily co-ordinate small molecules, e.g. CO, into the sixth coordination position. However, CO does not react with

 $Ru(CH_2C_6H_4CH_2)L_3$ at room temperature in the dark. Under more forcing conditions (100 °C; 100 atm) no simple addition product is obtained but mass spectral data show that substitution of one or two phosphorus atoms occurs along with the formation of Ru(CO)₃L₂. In u.v. light,

$Ru(CH_{2}C_{6}H_{4}CH_{2})L_{2}CO$ is apparently the only product.

The ³¹P n.m.r. spectrum for the complex with L =PMe2Ph consists of two singlets of intensity ratio 1:2 at δ 25.71 (P_B) and 5.05 (P_A).⁺ The lack of P-P coupling is, at first sight, surprising since, in general, five-co-ordinate complexes of ruthenium(II)⁴ or ruthenium(0)⁵ have J_{PP} > 20 Hz. The only ruthenium complexes for which $J_{\rm PP}$ is ca. 0 are zerovalent and contain dienes. For example, $\mathrm{Ru}(\mathrm{PPh}_3)_3(\mathrm{C_4H_6})$ has⁶ $J_{\mathrm{PP}} = 4.9 \ \mathrm{Hz}$ and we now believe that the ³¹P n.m.r. spectra of $Ru(styrene)(PPh_3)_2(C_4H_5R)$ (R = H or Et) are best interpreted as arising from a single isomer with non-equivalent phosphorus atoms and $J_{PP} =$ 0 rather than, as one of us has previously suggested,⁷ from different isomers each with equivalent phosphorus atoms.

(a) Extreme resonance hybrid for co-ordinated FIGURE 2. butadiene. (b) Possible similar bonding of the o-xylylene ligand.

An extreme resonance hybrid for co-ordinated buta-1,3diene is shown in Figure 2(a) and it is conceivable that a similar mode of bonding could exist [Figure 2(b)] for the o-xylylene ligand. In its delocalised form, this would give the structure shown in Figure 1(b) for the $Ru(CH_2C_6H_4CH_2)L_3$, complexes making them isoelectronic

with Ru(butadiene)(PPh₃)₃, and rationalising the zero value of $J(\mathbf{P}_{\mathbf{A}}\mathbf{P}_{\mathbf{B}})$.

Further evidence that supports the 18-electron formulation [Figure 1(b)] is the following: (i) the observed lack of formation of simple addition products with CO; (ii) the yellow colour of the complexes, which is generally associated with 18-electron complexes of ruthenium-(II) or -(0);^{7,8} (iii) the high-field shifts of one of the sets of protons of the methylene groups in each complex, which is similar to that found⁶ for the endo-methylene protons of co-ordinated butadiene in $Ru(C_4H_6)(PPh_3)_3$. Although confirmation of this unusual^{1,9,10} bonding mode for the o-xylylene ligand awaits crystallographic studies, a similar bonding mode has been observed for ${\rm Fe}(C_8H_8)({\rm CO})_2L~(L={\rm PPh}_3{}^{11}$ or CO12).

We thank Johnson Matthey Ltd. for loans of ruthenium, the S.R.C. for a studentship (S. D. C.) and Drs. W. Mac-Farlane and B. V. Cheesman for n.m.r. spectra (S.R.C. low-field n.m.r. service).

(Received, 22nd December 1980; Com. 1365.)

[‡] ³¹P Chemical shifts are in p.p.m. to high frequency of external 85% H₃PO₄.

- § This high-field shift could also arise from interaction with phenyl rings on PB.
- ¹S. D. Chappell and D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun., 1980, 238.
- ² R. A. Andersen, R. A. Jones, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1978, 446. ³ P. Foley, R. DiCosimo, and G. M. Whitesides, J. Am. Chem. Soc., 1980, 102, 6713.

- ^a P. Foley, R. Dicosimo, and G. M. Wintesdes, J. Am. Chem. Soc., 1930, 102, 613.
 ^a P. W. Armit, A. S. F. Boyd, and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1975, 1663.
 ^b D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1979, 1283.
 ^c D. J. Cole-Hamilton and G. Wilkinson, Nouv. J. Chim., 1977, 1, 141.
 ^c B. N. Chaudret, D. J. Cole-Hamilton, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1979, 1739.
 ^e B. N. Chaudret, D. J. Cole-Hamilton, R. S. Nohr, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1977, 1546, and references therein.
- ⁹ M. F. Lappert, T. R. Martin, J. L. Atwood, and W. E. Hunter, J. Chem. Soc., Dalton Trans., 1980, 476.
 ¹⁰ M. F. Lappert, T. R. Martin, C. R. C. Milne, J. L. Atwood, W. E. Hunter, and R. E. Pentilla, J. Organomet. Chem., 1980, 192, C35.
 ¹¹ J. D. Oliver, Ph.D. Thesis, Austin, Texas, 1971 (Chem. Abstr. 1972, 77, 106413).
- ¹² W. R. Roth and J. D. Meier, Tetrahedron Lett., 1967, 2053.