Facile &Hydrogen Abstraction from a Ruthenium Complex; Possible 1-4q -Bonding of the o-Xylylene Ligand

By S. DAVID CHAPPELL and DAVID J. COLE-HAMILTON

(Department of Inorganic, Physical and Industrial Chemistry, Liverpool University, P.O. Box 147, *Liverpool* **L69** 3BX)

Summary Reaction of $RuCl₂L₄$ (L = PMe₂Ph or PMePh₂) with o -MeC₆H₄CH₂MgBr in diethyl ether at room tem-(Department of Inorganic, Physical and Industrial Chemis

ummary Reaction of RuCl₂L₄ (L = PMe₂Ph or PMePh₂)

with o -MeC₆H₄CH₂MgBr in diethyl ether at room tem-

perature leads to Ru(CH₂C₆H₄CH₂)L₃

scopic and chemical characteristics suggest a possible $1-4\eta$ -bonding of the o -xylylene ligand.

ALKYL complexes of transition metals decompose either *via* reductive elimination or by hydrogen abstraction giving an alkane. We have recently reported¹ a rare example in which hydrogen abstraction occurs from a δ -carbon atom; the platinum-containing product contains a **2,** 3-benzoplatinacyclopentene ring, and very forcing conditions (refluxing xylene; 16 h) were required to effect the transformation. We now report that a similar reaction occurs for ruthenium but that the δ -hydrogen abstraction is so facile that even at room temperature we have been unable to isolate the presumed dialkyl intermediate.

A similar marked difference in reactivity between ruthenium² and platinum³ has been observed in the formation of analogous metallacyclobutane complexes from neopentyl derivatives.

Reaction of $RuCl₂L₄$ (L = PMe₂Ph or PMePh₂), obtained by metathetical exchange of L with $RuCl₂(PPh₃)₃$ in hexane at room temperature,⁴ with o -MeC₆H₄CH₂MgBr in ether at room temperature affords yellow solutions from which crystals of $\text{Ru}(\text{CH}_2\text{C}_6\text{H}_4\overset{\cdot}{\text{CH}}_2)\text{L}_3$ (L = PMe₂Ph, yellow; L = PMePh₂, orange) may be isolated. The mass spectra of these complexes show parent ions at 620 and 806 a.m.u. (based on $102Ru$), respectively, together with fragmentation patterns showing loss of the phosphine groups and of the C_8H_8 moiety. **ium Complex; Pos

e Ligand**

HAMILTON
 Jersity, *P.O. Box* 147, *Liver*

rature,⁴ with *o*-MeC₆H₄CH₁

ture affords yellow solut
 $\sqrt{\frac{1}{2}C_6H_4CH_2H_2}L_3^{\dagger}$ (L = range) may be isolated. a. The mass species at 620 and 806 a.1
er with fragmenta
ine groups and of
 $\sqrt{\frac{1}{\text{m}^2 + \text{m}^2}}$

From the ¹H n.m.r. spectra of $Ru(CH_2C_6H_4CH_2)$ (PMe₂- Ph)₃ it is clear that the methyl groups on P_A are diastereotopic and give rise to two doublets at δ 1.21 and 1.29 $(J_{PI}+J_{PI}$, 5 Hz), whilst those on P_B give a doublet at δ 1.73 (J_{PH} 7 Hz). The methylene groups give two doublets of doublets at δ - 0.16 (J_{PH} 8 Hz) and 1.9 (J_{PH} 6 Hz). Deof doublets at $\delta - 0.16$ (J_{PH} 8 Hz) and 1.9 (J_{PH} 6 Hz). Decoupling studies show that the two methylene groups are chemically equivalent but that the lack of a plane of symmetry coincident with the plane of the ring causes the two hydrogen atoms on each methylene group to be nonequivalent; thus $J_{HH} = 4$ Hz. The ¹H n.m.r. spectrum of

Ru(CH₂C₆H₄CH₂)(PMePh₂)₃ is qualitatively similar except that only two signals are observed from the phosphine methyl groups: δ 2.22 (d, J_{PH} 6 Hz) and 1.7 (d, with some

t Satisfactory analyses have been obtained for both complexes.

intensity between the lines). The methylene groups again give rise to two doublets of doublets, δ 0.63 ($J_{\rm PH}$ 8 Hz) and 1.99 $(J_{PH} 6 Hz)$; $J_{HH} = 4 Hz$.

These n.m.r. data could qualitatively be accounted for assuming a five-co-ordinate structure as shown in Figure I(a). Such a five co-ordinate complex should readily co-ordinate small molecules, *e.g.* CO, into the sixth coordination position. However, CO does not react with $P_{\rm A}$ cn₂ cn₂
(a)
FIGURE 1. Possible structensity between the lines
ive rise to two doublets of
 -99 ($J_{\rm PH}$ 6 Hz); $J_{\rm HH} = 4$]
These n.m.r. data could
ssuming a five-co-ordinate
(a). Such a five co-ordinate
di

 $Ru(CH_2C_6H_4CH_2)L_3$ at room temperature in the dark. Under more forcing conditions (100 "C; 100 atm) no simple addition product is obtained but mass spectral data show that substitution of one or two phosphorus atoms occurs along with the formation of $Ru(CO)₃L₂$. In u.v. light, $u(CH_2C_6H_4CH_2)L_3$

inder more forcing

didition product is

aat substitution of

ong with the for
 $u(CH_2C_6H_4CH_2)L_2$

$Ru(CH_{2}C_{6}H_{4}CH_{2})L_{2}CO$ is apparently the only product.

The ^{31}P n.m.r. spectrum for the complex with $L =$ PMe,Ph consists of two singlets of intensity ratio 1 : **2** at δ 25.71 (P_B) and 5.05 (P_A).^{*} The lack of P-P coupling is, at first sight, surprising since, in general, five-co-ordinate complexes of ruthenium((I) ⁴ or ruthenium(0)⁵ have J_{PP} > 20 Hz. The only ruthenium complexes for which J_{PP} is *ca. 0* are zerovalent and contain dienes. For example, $Ru(PPh₃)₃(C₄H₆)$ has⁶ $J_{PP} = 4.9 Hz$ and we now believe that the ^{31}P n.m.r. spectra of Ru(styrene) (PPh₃)₂(C₄H₅R) $(R = H \text{ or } Et)$ are best interpreted as arising from a single isomer with non-equivalent phosphorus atoms and $J_{PP} =$ 0 rather than, as one of us has previously suggested,' from different isomers each with equivalent phosphorus atoms.

FIGURE 2. (a) Extreme resonance hybrid for co-ordinated butadiene. (b) Possible similar bonding of the *o*-xylylene (b) Possible similar bonding of the o -xylylene ligand.

An extreme resonance hybrid for co-ordinated buta-1,3diene is shown in Figure **2(a)** and it is conceivable that a similar mode of bonding could exist [Figure 2(b)] for the o-xylylene ligand. In its delocalised form, this would give the structure shown in Figure l(b) for the $\text{Ru}(\text{CH}_2\text{C}_6\text{H}_4\text{CH}_2) \text{L}_3$, complexes making them isoelectronic

with $Ru(butadiene)(PPh₃)₃$, and rationalising the zero value of $J(P_{\rm A}P_{\rm B})$.

Further evidence that supports the 18-electron formulation [Figure l(b)] is the following: (i) the observed lack **of** formation of simple addition products with CO; (ii) the yellow colour of the complexes, which is generally associated with 18-electron complexes of ruthenium- (11) or $-(0)$;⁷,⁸ (iii) the high-field shifts of one of the sets of protons of the methylene groups in each complex, which is similar to that founds for the endo-methylene protons of co-ordinated butadiene in $Ru(C_4H_6)(PPh_3)_3$. Although confirmation of this unusual^{1,9,10} bonding mode for the *o*-xylylene ligand awaits crystallographic studies, a similar bonding mode has been observed for $Fe(C_8H_8)(CO)_2L$ (L = PPh₃¹¹ or $CO¹²$).

We thank Johnson Matthey Ltd. for loans of ruthenium, the S.R.C. for a studentship (S. D. C.) and Drs. W. Mac-Farlane and B. V. Cheesman for n.m.r. spectra (S.R.C. low-field n.m.r. service).

(Received, 22nd December 1950; *Corn.* **1365.)**

3 31P Chemical shifts are in p.p.m. to high frequency of external **85** % H,PO,.

- § This high-field shift could also arise from interaction with phenyl rings on P_B.
- **¹**S. D. Chappell and D. J. Cole-Hamilton, *J. Chem. SOC., Chem. Commun.,* **1980, 238.**
-
- ² R. A. Andersen, R. A. Jones, and G. Wilkinson, *J. Chem. Soc., Dalton Trans.*, 1978, 446.
³ P. Foley, R. DiCosimo, and G. M. Whitesides, *J. Am. Chem. Soc.*, 1980, 102, 6713.
³ P. Foley, R. DiCosimo, and G. M. Whit
- P. W. Armit, A. S. F. Boyd, and T. **A.** Stephenson, *J. Chem.* SOC., *Dalton Trans.,* **1975, 1663.**
- *⁶*D. J. Cole-Hamilton and G. Wilkinson, *J. Chem. SOC., Dalton Trans.,* **1979, 1283.**
- D. J. Cole-Hamilton and G. Wilkinson, *Now. J. Chim.,* **1977, 1, 141.**
-
- ⁷ B. N. Chaudret, D. J. Cole-Hamilton, and G. Wilkinson, *J. Chem. Soc., Dalton Trans.*, 1979, 1739.
⁸ B. N. Chaudret, D. J. Cole-Hamilton, R. S. Nohr, and G. Wilkinson, *J. Chem. Soc., Dalton Trans.*, 1977, 1546, and therein.
-
- ⁹ M. F. Lappert, T. R. Martin, J. L. Atwood, and W. E. Hunter, *J. Chem. Soc., Dalton Trans.*, 1980, 476.
¹⁰ M. F. Lappert, T. R. Martin, C. R. C. Milne, J. L. Atwood, W. E. Hunter, and R. E. Pentilla, *J. Organomet. C*
-
- **12W.** R. Roth and J. D. Meier, *Tetrahedron Lett.,* **1967, 2053.**