Racemisation of Activated, Urethane-protected Amino-acids by p-Dimethylaminopyridine. Significance in Solid -phase Peptide Synthesis

BY ERIC ATHERTON, N. LEO BENOITON,[†] EVELYN BROWN, ROBERT C. SHEPPARD, and BRIAN J. WILLIAMS *(M.R.C. Laboratory of Molecular Biology, Halls Road, Cambridge* CB2 2QH)

Summary Racemisation of N_{α} -t-butoxycarbonyl, fluoren-9-ylmethoxycarbonyl, and benzyloxycarbonyl aminoacid anhydrides by p -dimethylaminopyridine is shown to be a significant side reaction during attachment of the first amino-acid to the resin in solid-phase peptide synthesis.

\$-DIhlETHYLAMINOPYRIDINE iS an efficient Catalyst for acylation of hydroxy-groups.' **A** currently important application is in the esterification of the first (carboxy terminal) N-protected amino-acid residue to hydroxymethyl polymers in solid-phase peptide synthesis (e.g. refs. 2-5). In our recent syntheses^{3a} of 13, 14, and 17 residue gastrin peptides by the polyamide solid-phase method⁶ we observed formation in each case[†] of a minor $(ca. 4\%)$ impurity separable by preparative h.p.1.c. These impurities were apparently isomeric in amino-acid composition with the parent gastrins but were incompletely degraded by enzymes in the carboxy terminal $(-Asp.Phe.NH₂)$ region. The stability of β -t-butyl aspartate residues to $\alpha \rightarrow \beta$ rearrangement under the conditions of peptide synthesis has been convincingly demonstrated.^{6c,7} In view of recent developments^{8,9} showing that, contrary to long held beliefs, oxazolone formation and hence racemisation of urethane-protected α -amino-acids is indeed possible, we considered that these impurities might contain carboxy terminal n-phenylalanine. The experiments described below show that appreciable racemisation does occur under reaction conditions commonly used for esterification of the first amino-acid to hydroxymethyl polymers.

An excess of the symmetrical anhydride of N-t-butoxycarbonyl-L-isoleucine prepared in dichloromethane in the

usual manner^{6b} and dissolved in dimethylacetamide was added to p-hydroxymethylphenoxyacetyl-polydimethylacrylamide $resin^{6c,10}$ in dimethylacetamide containing an equivalent amount of p-dimethylaminopyridine. After *5* h the resin was washed and bound amino-acid liberated and deprotected by a single treatment with **95%** aqueous trifluoroacetic acid. Amino-acid analysis¹¹ showed that the isoleucine contained *5%* of the allo-isomer. The observed racemisation was nearly independent of solvent (dimethylformamide, dichloromethane) or urethane N-protecting group (fluorenylmethoxycarbonyl or benzyloxycarbonyl) (see Table). When the anhydride and dimethylaminopyridine were mixed and kept for *5* min before addition to the polymer, **20%** of allo-isoleucine was obtained. Racemisation was reduced substantially by adding the dimethylaminopyridine to the resin *after* the anhydride, by shortening the coupling time, and particularly by reducing the amount of pyridine derivative added. Under the original conditions, fluorenylmethoxycarbonyl-L-leucine formed **1.5%** of the D-isomer, and **t-butoxycarbonyl-L-phenylalanine** gave **2** % . p-Dimethylaminopyridine had no effect on the isomer content or absolute amount of Boc-isoleucine previously bound to the resin support.\$

Rest conditions thus far found for efficient esterification of Boc-isoleucine anhydride to the polyamide resin with minimum racemisation are p-dimethylaminopyridine (0.1 equiv.) and N-methylmorpholine (1 equiv.) in dimethylformamide for **30** min. allo-Tsoleucine formation is less than 2% and the coupling yield 90% . Solvent dimethylformamide gives more rapid acylation than dimethylacetamide. Amino-acid residues coupling faster than

p On sabbatical leave from the University **of** Ottawa, Canada.

 \ddagger See, for example, peak B in Figure (a) of ref. 3a.

§ The racemisation effected by p-dimethylaminopyridine is consistent with the finding (N. L. Benoiton and F. M. F. Chen, unpublished work) that in the presence of tricthylamine the symmetrical anhydride of N_a -t-butoxycarbonyl-L-valine gives rise to the 2-t-butoxy-5(4H)-oxazolone which racemises when coupled in the presence of the base.⁹ **TABLE.** Proportion of *allo-* or D-isomer formed in the coupling of urethane-protected amino-acid anhydrides to polydimethylacryl-Abbreviations: Boc, t-butoxycarbonyl; Fmoc, fluoren-9-ylmethoxycarbonyl; Z, benzyloxycarbonyl; DMA, dimethylacetamide; DMF, dimethylformamide; DMAP, p-dimethylaminopyridine.

^aThe anhydride was pretreated with DMAP for **5** min, before addition to the resin. **b** The DMAP was added to the resin after the anhydride. ^c D-Amino-acid content determined by subsequent coupling of L- and DL-Boc.Lys(Boc), cleavage, and separation of diastereoisomeric dipeptides.¹³ ^d The p-carboxybenzyl alcohol resin linkage agent^{6c,10} was used and the dipeptide cleaved from the resin by hydrogenolysis. *e* The DMAP and **1** equiv. of N-methylmorpholine were added after the anhydride.

isoleucine and valine are expected¹² to give appreciably less racemisation in polar solvents in the absence of special side-chain factors.

Neither the method of Wang2 (dicyclohexylcarbodi-imide coupling in the presence of p -dimethylaminopyridine) nor that of Bodanszky14 (active ester coupling in the presence of imidazole) were satisfactory when applied to the hydroxymethyl-polydimethylacrylamide support. Low yields were obtained in both cases with racemisation $(1.5-2.5\%$ *allo*) in the former. However, it is noteworthy that transesterification of Boc-isoleucine p-nitrophenyl ester with hydroxymethyl-polydimethylacrylamide resin in dichloromethane gave no detectable allo-isoleucine when catalysed by imidazole or by p -dimethylaminopyridine. The yields were **40** and **50%** respectively in **24** h. Procedures based on activated esters may, therefore, be particularly appropriate in relatively non-polar polystyrene-based systems which permit use of non-polar solvents, as noted by Bodanszky.¹⁴

Slight racemisation of the C-terminal amino-acid residue is of no consequence when, as with the gastrin peptides cited above, the single resulting diastereoisomer may be separated from the desired optically pure product. Recent experience¹⁵ in the solid-phase synthesis of peptides (carboxy terminus -Thr.Ala.OH) related to histocompatibility antigens¹⁶ has provided another example of a minor contaminant immediately following but separated from the main product by h.p.1.c. which was resistant to enzymic (carboxypeptidase) digestion. On the other hand, in our syntheses of β -endorphin,³⁰ analytical evidence was obtained for the formation of a minor byproduct which could not at that time be separated from the immediately preceding major peak. Thus, although racemisation of urethane protected amino-acid derivatives may not be a significant problem in the normal processes of solution or solid-phase peptide synthesis,^{8b,9} special circumstances, particularly the use of basic or other catalysts, may require its serious consideration.

Part of this work was financially supported by the Medical Research Council of Canada.

(Received, 22nd January **1981;** *Corn.* **077.)**

- **W.** Steglich and G. Hofle, *Angew. Chem., Int. Ed. Engl.,* **1969, 8, 981.**
- *S. S.* Wang and I. D. Kulesha, *J. Org. Chem.,* **1975, 40, 1227; S.** S. Wang, *ibid.,* p. **1235;** J. K. Chang, M. Shimizu, and S. S. Wang, *ibid..* **1976. 41.** *3255.*
- (a) E. Brown, B. J. Williams, and €3. C. Sheppard, *J. Chem. Soc., Chem. Commun.,* **1980, 1093;** (b) E. Atherton. V. Woolley, and R. C. Sheppard, *ibid.,* p. **970;** (c) E. Atherton, H. **Fox,** D. Harlriss, and K. *C.* Sheppard, *ibid.,* **1978, 539.**
- 4 J. Meienhofer, M. Waki, E. P. Heimer, T. J. Lambros, R. C. Makofske, and C.-D. Chang, *Int. J. Pept. Protein Res.*, 1979, 13, 35.
5 J. P. Tam, R. D. DiMarchi, and R. B. Merrifield, *Int. J. Pept. Protein Res.*, 1980, 16,

(a) E. Atherton, M. J. Gait, R. C. Sheppard, and B. J. Williams, *Bioorg. Chem.,* **1979, 8, 351** ; **(b)** R. Arshsdy, E. Atherton, D. L. J.

- Clive, and R. C. Sheppard, *J. Chem. Soc., Perkin Trans.* 1, 1981, 529; (c) E. Atherton, C. J. Logan, and R. C. Sheppard, *ibid.*, p.538.
7 E. Atherton, H. Fox, D. Harkiss, C. J. Logan, R. C. Sheppard, and B. J. Williams, *Trans.* **1, 1979, 3203.**
- **⁹**(a) **N. L.** Benoiton and F. M. F. Chen, in 'Peptides: Structure and Biological Function,' eds. E. Gross and J. Meienhofer, Pierce Chemical Co., Rockford, Illinois, 1979, 261; (b) N. L. Benoiton and F. M. F. Chen, Can. J. Chem., 1981, 59, 384.
¹⁰ R. Arshady, E. Atherton, M. J. Gait, K. Lee, and R. C. Sheppard, J. Chem. Soc., Chem., Commun., 1979, 42

-
- ¹²**(a) N.** L. Benoiton and K. Kuroda, *Int. J. Pept. Protein Res.,* **1981,** *17,* **197; (b) N.** L. Benoiton, K. Kuroda, and F. M. F. Chen, *ibid.,* **1979, 13, 403.**
- **13N.** L. Benoiton, K. Kuroda, S. T. Cheung, and F. M. F. Chen, *Can. J. Biochem.,* **1979, 57, 776.**
- **¹⁴M.** Bodanszky and D. T. Fagan, *Int. J. Pep. Protein lies.,* **1977, 10, 375.** E. Atherton, W. Hiibscher, and V. Woolley, unpublished results.
-
- l6 R. J. Robb, C. Terhorst, and J. Strominger, *J. Biol. Chem.,* **1978, 253, 5319.**