Photocatalytic Synthesis of Ethane from Acetic Acid. Kolbe Reaction at a Gas–Solid Interface under U.V.-illumination

Shinri Sato

Research Institute for Catalysis, Hokkaido University, Sapporo 060, Japan

Photocatalytic decarboxylation of gaseous acetic acid over u.v.-illuminated, platinized titania gave predominantly ethane when gaseous water was present in the system.

Although electrochemical reactions are usually carried out in solutions, the present paper shows an example of a process analogous to an electrochemical reaction which occurs at a gas-solid interface without an applied voltage. The process is decarboxylation of gaseous CH_3COOH over u.v.-illuminated platinized titania powder (Pt-TiO₂) giving the same products as in the Kolbe electrolysis of CH_3COOH . The product selectivity and the reaction rate were found to be sensitive to reaction conditions. In a similar reaction carried out in the liquid phase, the products were almost exclusively CH_4 and CO_2 , independent of reaction conditions.¹

In a typical experiment, 0.3 g of Pt–TiO₂ catalyst were spread on the flat bottom of a quartz reaction cell. The cell was then connected to an evacuable circulation system (212 ml) and the catalyst was outgassed at 200 °C in a vacuum of less than 3×10^{-6} Torr. Glacial CH₃COOH, which had been outgassed at about -100 °C, was introduced in the gas phase into the reaction system at a desired pressure and the reaction was started by illuminating the catalyst with a 500 W ultrahigh-pressure Hg lamp. The reaction products were analysed by a mass spectrometer.

A typical time dependence of the reaction products is shown

Figure 1. Time dependence of the products in the photodecomposition of gaseous CH_3COOH (initial pressure *ca*. 4 Torr) over Pt-TiO₂. After 60 min gaseous H_2O (*ca*. 20 Torr) was added.

in Figure 1. No other product (such as O_2) was detected and no reaction took place without the catalyst or in the dark. Figure 1 indicates that two reactions (1) and (2) are involved,

$$CH_3COOH \to CH_4 + CO_2 \tag{1}$$

$$2CH_3COOH \rightarrow C_2H_6 + H_2 + 2CO_2, \qquad (2)$$

as in the Kolbe electrolysis, because the product composition exactly satisfies the stoicheiometry of these reactions while CH₃COOH is present. A remarkable feature in the present process is that addition of gaseous H₂O to the system leads to a marked increase in the decarboxylation rate, especially in the rate of formation of C₂H₆. As shown in Figure 1, C₂H₆ formation was accelerated from 1.5 to 74 μ mol/h and CH₄ formation from 3 to 17 μ mol/h. The degree of acceleration depends on the amount of H₂O introduced. Addition of gaseous CH₃OH instead of H₂O did not accelerate the reaction. Although the photo-decarboxylation of gaseous CH₃COOH occurs slowly over TiO₂ alone, H₂O had no effect on its rate.

Figure 1 also shows that the amounts of CO₂ and H₂ still increase and that of C₂H₆ slightly decreases after the consumption of CH₃COOH owing to the photocatalytic reaction of C₂H₆ with H₂O over Pt–TiO₂, which yields CO₂ and H₂ as reported before.²

Since a fairly large amount of gaseous CH₃COOH is adsorbed on Pt–TiO₂, the surface would be covered with more than one monolayer of adsorbed CH₃COOH even at low pressure. The mechanism of the present process, therefore, may be basically the same as that of the liquid phase reaction,¹ *i.e.*, a photoanodic oxidation of CH₃COOH takes place on TiO₂ and each Pt–TiO₂ particle is thought to act as a shortcircuited Pt–TiO₂ photoelectrochemical cell.^{1,3} The role of H₂O in the gase phase reaction, however, has not yet been elucidated but OH radicals formed from H₂O may give rise to CH₃ radicals.

Received, 24th August 1981; Com. 1026

References

- 1 B. Kraeutler and A. J. Bard, J. Am. Chem. Soc., 1978, 100, 2239, 5985.
- 2 S. Sato and J. M. White, Chem. Phys. Lett., 1980, 70, 131.
- 3 S. Sato and J. M. White, J. Phys. Chem., 1981, 85, 592.