Selective Synthesis of (Z)-Alk-2-enenitriles from Aldehydes

Yoshiro Sato* and Yasuko Niinomi

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

A highly stereoselective synthesis of (Z)-alk-2-enenitriles from aldehydes is accomplished by reaction with tris(trimethylsilyl)ketenimine, followed by alkali treatment.

The synthesis of alk-2-enenitriles from aldehydes has been realised *via* several routes: Doebner modification of the Knoevenagel reaction,¹ Wittig reaction,² Wittig-Horner reaction,³ Peterson reaction,⁴ and direct condensation with

acetonitrile.⁵ In these reactions, Z-isomers are usually produced in lower yield than E-isomers, and isolation of the former requires inefficient and laborious fractional distillation or crystallization. We report here a highly stereoselective

Table 1. Yields of (E)-2-trimethylsilylalk-2-enenitriles (4) and (Z)-alk-2-enenitriles (5).^a

	% Yield ^b		9/ Icomorio
R	$\overbrace{(1) \rightarrow (4)}$	$(4) \rightarrow (5)$	purity of (5)
a; n-C ₃ H ₇	78	65	100
b : $n-C_5H_{11}$	74	85	100
c: Cyclohexyl	67	85	100
d; Et(Bu ⁿ)CH	74	91	100
e; PhCH ₂ CH ₂	78	95	100
f; Ph	89	97	96
g: p-MeOC ₆ H ₄ -	88	92	96

^a Satisfactory spectral and analytical data were obtained for all products. ^b All yields refer to isolated materials. ^c Determined on a Silicone DC-550 column.

synthesis of (Z)-alk-2-enenitriles from aliphatic and aromatic aldehydes (Table 1). \dagger

Tris(trimethylsilyl)ketenimine (2),⁶ which was easily prepared by silylation of trimethylsilylacetonitrile,⁷ reacted with aldehydes (1) to give a 1:1 adduct (3) in the presence of BF₃-Et₂O at room temperature in benzene (Scheme 1). Upon heating, (3) was converted quantitatively into (E)-2-trimethylsilylalk-2-enenitriles (4) with the elimination of hexamethyldisiloxane. Compounds (4) were distillable oils and stable in

† A typical experimental procedure is as follows. A solution of (2) (7.00 mmol) in benzene (5 ml) was added dropwise to an icc-cooled solution of (1d) (5.83 mmol) and BF_3 -Et₂O (2.91 mmol) in benzene (7 ml). Stirring was continued at 25 °C for 2 h, and then under reflux for 1 h. The mixture was diluted with benzene (20 ml), washed with water (10 ml × 3), dried (CaCl₂), and concentrated. Kugelrohr distillation of the residue gave crude (4d) (b.p. 130 °C at 35 mmHg). This product contained a small amount of bis(trimethylsillyl)acetonitrile which was removed by means of 10% NaOH (10 ml). 961 mg (74%) of pure (4d) resulted, b.p. 115—117 °C at 10 mmHg; i.r. (film) 1595 (C=C) and 2190 cm⁻¹(CN); n.m.r. (CDCl₃) δ 0.23 (3H, s, SiMe₃) and 6.22 (1H, d, J 10.0 Hz, -CH=). To a solution of (4d) (3.98 mmol) at 0 °C in ether (40 ml) was added 1M-NaOH in MeOH (4 mmol). The mixture was stirred for 1 h, washed with ice-water (20 ml × 3), dried (CaCl₂), and concentrated. Distillation gave 545 mg (91%) of (5d), b.p. 128—129 °C at 60 mmHg; i.r. (film) 1622 (C=C) and 2215 cm⁻¹ (CN); n.m.r. (CDCl₃ δ 5.39 (1H, d, J 11.0 Hz, =CH-CN) and 6.27 (1H, d, J 11.0 and 11.0 Hz, R-CH=).

Scheme 1. i, BF_3 - Et_2O , C_6H_6 ; ii, heat, C_6H_6 ; NaOH-MeOH, Et_2O , 0 °C.

neutral and acidic medium at room temperature, but were quickly desilylated in an alkaline medium giving pure (Z)-alk-2-enenitriles (5). The stereoselectivity of this reaction was high, indeed, the E isomers were not detected by either g.l.c. or ¹H n.m.r. spectra of the products, except for the cinnamonitrile (5f) and an analogue (5g).

Received, 28th September 1981; Com. 1138

References

- 1 G. Jones, Org. React., 1967, 15, 204.
- 2 A. Maercker, Org. React., 1965, 14, 270.
- 3 J. Boutagy and R. Thomas, *Chem. Rev.*, 1974, 74, 87; W. S. Wadsworth, Jr., *Org. React.*, 1977, 25, 73.
- 4 T. H. Chan, Acc. Chem. Res., 1977, 10, 442.
- 5 G. W. Gokel, S. A. DiBiase, and B. A. Lipisko, Tetrahedron Lett., 1976, 3495.
- 6 M. Prober, J. Am. Chem. Soc., 1956, 78, 2274; G. A. Gornowicz and R. West, J. Am. Chem. Soc., 1971, 93, 1714.
- 7 I. Matsuda, S. Murata, and Y. Ishii, J. Chem. Soc., Perkin Trans. 1, 1979, 26.