Vibrational Spectra of N₂ on Ni(110)

Brian J. Bandy,³ Nicholas D. S. Canning,³ Peter Hollins,^{b*} and J. Pritchard^b

^a*School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.*

b *Chemistry Department, Queen Mary College, Mile End Road, London El 4NS, U.K.*

High-resolution electron-energy-loss spectra of N_2 adsorbed on Ni(110) give evidence of only a single species at all coverages.

 N_2 chemisorption on Ni(110) at low temperatures ($<$ 130 K) occurs in two stages.^{1,2} The first, characterized by an almost constant adsorption enthalpy and a positive surface potential, culminates (at thermal equilibrium) in the formation of a $p(2 \times 1)$ structure in which all the adsorbed molecules are equivalent.2 Further adsorption induces falls in the adsorption enthalpy and the surface potential, and low-energy electron diffraction (LEED) shows **a** range of compression structures with more than one type of adsorption site occupied. CO adsorption on a variety of metals displays similar features, and in many of these instances vibrational spectroscopy can distinguish molecules adsorbed at different sites, discriminating especially between 'linear' molecules bound to a single surface atom and bridged species. Linearly bonded N₂ has been detected on Ni (110) by i.r. spectroscopy,¹ but instrumental limitations precluded a search for bridged N_a , and

similarly prevented study of the metal-nitrogen bond. We report here a high-resolution electron-energy-loss study which overcomes these restrictions.

The ultra-high vacuum apparatus used, the specimen preparation procedure, and the operating conditions of the Leybold-Heraeus ELS22 spectrometer were identical with those of our investigation of CO adsorption on $Ni(110).³$

Figure 1 shows the growth with coverage of the $^{14}N_2$ vibrational spectrum in the specularly reflected beam: v_{Ni-N} and v_{N-N} bands occur at 42 mV (339 cm⁻¹) and 272 mV (2194 cm⁻¹) respectively at all coverages. [The v_{N-N} value agrees with the earlier i.r. results. ¹⁵N₂ gives $v_{Ni-N} = 40$ mV (323 cm^{-1}) and $v_{N-N} = 263 \text{ mV} (2122 \text{ cm}^{-1})$]. The v_{Ni-N} band intensity is similar to that of v_{Ni-C} in the CO/Ni(110) system, whereas the v_{N-N} intensity is much weaker than the corresponding v_{C-O} one.

Figure 1. ¹⁴N₂ vibrational spectra of N₂ on Ni(110). $(1 L \equiv 1.33 \times 10^{-4}$ Pa s)

As one moves away from the specular direction both band intensities fall rapidly, showing that a dipolar scattering mechanism operates, although the rate **of** fall does indicate substantial intermolecular dipole coupling within the monolayer, a phenomenon also seen with CO on $Cu(100).⁴$ No additional bands were observed in the off-specular experiments.

The absence **of** any band corresponding to a bridged species established another similarity between the $N_2/Ni(110)$ and CO/Cu adsorption systems. **As** the top spectrum in Figure **1** shows, even at saturation there is no feature above noise level in the relevant frequency region, although a band having only 1 % **of** the intensity of the **272** mV one would be readily detectable. **LEED** observations indicate that under the conditions of this spectrum the N_2 molecules are packed along the rows **of** the (1 10) surface at a separation of 1.5 lattice spacings, so the true density of bridge molecules must be high. **As** with CO/Cu there are two possible explanations for this discrepancy : either the frequency difference between linear and bridge molecules **is** very small, or else intermolecular interactions in the adlayer are *so* strong that the presence of **a** bridged species is masked by intensity transfer.⁵ The existence of large dipole coupling effects in both systems lends some support to the second hypothesis.

We gratefully acknowledge support from the **S.E.R.C.**

Received, 8th October I981 ; *Corn. I193*

References

- **1 M.** Grunze, **R.** K. Driscoll, G. N. Burland, **J.** C. **L.** Cornish, and **J.** Pritchard, *Surface Sci.,* **1979, 89, 381.**
- **2** R. **K.** Driscoll, M. Golze, and M. Grunze, to be published.
- **3** B. **J.** Bandy, M. A. Chesters, P. Hollins, **J.** Pritchard, and N. Sheppard, *J. Mol. Struct.,* to be published.
- **4 S.** Andersson and B. N. **J.** Persson, *Phys. Rev. Lett.,* **1980, 45,**
- Pa *s) 5* **P.** Hollins and **J.** Pritchard, *Chem. Phys. Lett.,* **1980,** *75,* **378.**