## Vibrational Spectra of N<sub>2</sub> on Ni(110)

Brian J. Bandy,<sup>a</sup> Nicholas D. S. Canning,<sup>a</sup> Peter Hollins,<sup>b\*</sup> and J. Pritchard<sup>b</sup>

<sup>a</sup> School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

<sup>b</sup> Chemistry Department, Queen Mary College, Mile End Road, London E1 4NS, U.K.

High-resolution electron-energy-loss spectra of  $N_2$  adsorbed on Ni(110) give evidence of only a single species at all coverages.

 $N_2$  chemisorption on Ni(110) at low temperatures (< 130 K) occurs in two stages.<sup>1,2</sup> The first, characterized by an almost constant adsorption enthalpy and a positive surface potential, culminates (at thermal equilibrium) in the formation of a  $p(2 \times 1)$  structure in which all the adsorbed molecules are equivalent.<sup>2</sup> Further adsorption induces falls in the adsorption enthalpy and the surface potential, and low-energy electron diffraction (LEED) shows a range of compression structures with more than one type of adsorption site occupied. CO adsorption on a variety of metals displays similar features, and in many of these instances vibrational spectroscopy can distinguish molecules adsorbed at different sites, discriminating especially between 'linear' molecules bound to a single surface atom and bridged species. Linearly bonded N2 has been detected on Ni(110) by i.r. spectroscopy,<sup>1</sup> but instrumental limitations precluded a search for bridged N2, and

similarly prevented study of the metal-nitrogen bond. We report here a high-resolution electron-energy-loss study which overcomes these restrictions.

The ultra-high vacuum apparatus used, the specimen preparation procedure, and the operating conditions of the Leybold-Heraeus ELS22 spectrometer were identical with those of our investigation of CO adsorption on Ni(110).<sup>3</sup>

Figure 1 shows the growth with coverage of the  $^{14}N_{\odot}$  vibrational spectrum in the specularly reflected beam:  $\nu_{Ni-N}$  and  $\nu_{N-N}$  bands occur at 42 mV (339 cm<sup>-1</sup>) and 272 mV (2194 cm<sup>-1</sup>) respectively at all coverages. [The  $\nu_{N-N}$  value agrees with the earlier i.r. results.  $^{15}N_2$  gives  $\nu_{Ni-N}=40$  mV (323 cm<sup>-1</sup>) and  $\nu_{N-N}=263$  mV (2122 cm<sup>-1</sup>)]. The  $\nu_{Ni-N}$  band intensity is similar to that of  $\nu_{Ni-C}$  in the CO/Ni(110) system, whereas the  $\nu_{N-N}$  intensity is much weaker than the corresponding  $\nu_{C-O}$  one.





Figure 1.  $^{14}N_2$  vibrational spectra of  $N_2$  on Ni(110). (1 L  $\equiv$  1.33  $\times$  10^{-4} Pa s)

As one moves away from the specular direction both band intensities fall rapidly, showing that a dipolar scattering mechanism operates, although the rate of fall does indicate substantial intermolecular dipole coupling within the monolayer, a phenomenon also seen with CO on Cu(100).<sup>4</sup> No additional bands were observed in the off-specular experiments.

The absence of any band corresponding to a bridged species established another similarity between the N<sub>2</sub>/Ni(110) and CO/Cu adsorption systems. As the top spectrum in Figure 1 shows, even at saturation there is no feature above noise level in the relevant frequency region, although a band having only 1% of the intensity of the 272 mV one would be readily detectable. LEED observations indicate that under the conditions of this spectrum the N<sub>2</sub> molecules are packed along the rows of the (110) surface at a separation of 1.5 lattice spacings, so the true density of bridge molecules must be high. As with CO/Cu there are two possible explanations for this discrepancy: either the frequency difference between linear and bridge molecules is very small, or else intermolecular interactions in the adlayer are so strong that the presence of a bridged species is masked by intensity transfer.<sup>5</sup> The existence of large dipole coupling effects in both systems lends some support to the second hypothesis.

We gratefully acknowledge support from the S.E.R.C.

Received, 8th October 1981; Com. 1193

## References

- 1 M. Grunze, R. K. Driscoll, G. N. Burland, J. C. L. Cornish, and J. Pritchard, Surface Sci., 1979, 89, 381.
- 2 R. K. Driscoll, M. Golze, and M. Grunze, to be published.
- 3 B. J. Bandy, M. A. Chesters, P. Hollins, J. Pritchard, and N. Sheppard, J. Mol. Struct., to be published.
- 4 S. Andersson and B. N. J. Persson, Phys. Rev. Lett., 1980, 45, 1421.
- 5 P. Hollins and J. Pritchard, Chem. Phys. Lett., 1980, 75, 378.