Synthesis of Nitrogen-15-labelled Primary Amines via Organoborane Reactions

George W Kabalka,* Kunda A. R. Sastry, Gary W. McCollum, and Charles A. Lane Chemistry Department, University of Tennessee, Knoxville, TN 37916, U.S.A.

¹⁵N-Labelled primary amines are readily synthesized *via* the reaction of organoboranes with ¹⁵N-enriched ammonium hydroxide; functionally substituted organic amines are efficiently prepared *via* the new synthesis.

Nitrogen-15-enriched materials are becoming increasingly important in biological research with the advent of modern multinuclear n.m.r. spectrometers.¹⁻³ We report that ¹⁵N can be efficiently incorporated into primary amines *via* the reaction of organoboranes with ¹⁵N-enriched (up to 95%) NH₄OH in the presence of sodium hypochlorite.

$$R_3B + {}^{15}NH_4OH \xrightarrow{\text{NaOCl}} R^{-15}NH_2$$

In recent years, we have used organoborane technology to incorporate a variety of carbon, iodine, and bromine iso-

Table 1

Alkene ^a	Product	% Yield ^b	δ(¹⁵ N)
Me[CH ₂] ₇ CH=CH	$_{2}$ Me[CH ₂] ₈ CH ₂ $-\frac{15}{15}$ NH ₂	85	12.6
	15NH ₂	71	8.4
	15NH ₂	66	23.6
p-MeC ₆ H ₄ S	p-MeC ₆ H ₄ S	1 ₂ 75	7.7
$ \begin{array}{c} \text{O} \\ \text{II} \\ \text{MeOC[CH}_2]_8 \text{CH=CH}_2 \end{array} $	O MeOC[CH ₂] ₉ CH ₂ ¹⁵ NH ₂	79	10.6

^a The alkenes were converted into the corresponding trialkylboranes *via* hydroboration with BH₃·THF. ^b Isolated yields based on ¹⁵NH₄OH; all products exhibited physical and spectral characteristics identical to those of authentic samples (ref. 7). ^c N.m.r. spectra were run on a JEOL FX-9OQ instrument; products were dissolved in dilute HCl and referenced to ext. ¹⁵NH₄Cl (2.9 M in 1.0 M HCl); the 2-amino-isomers resonated at higher chemical shifts.

topes. We felt that our recently reported amination reaction would be an ideal method for incorporating ¹⁵N into functionally substituted organic molecules.

The amination reactions are carried out in a straightforward fashion; ¹⁵NH₄OH† (0.5 M) is mixed with the organoborane [0.5 M in tetrahydrofuran (THF), 1 equiv.] in a nitrogenflushed flask. The mixture is cooled to 0 °C and sodium hypochlorite‡ (0.75 M, 1.2 equiv.) is slowly added; the mixture is stirred for 30 min while warming to room temperature. The product§ is isolated by extraction into dil. HCl which is then washed with diethyl ether; neutralization of the acid layer permits extraction of the product into diethyl ether. Our results are summarized in Table 1.

We thank the Department of Energy and the National Institutes of Health for support of this research.

Received, 17th September 1981; Com. 1103

References

- 1 A. Abe, M. Nee, J. D. Roberts, W. L. Wittenberg, and N. J. Leonard, J. Am. Chem. Soc., 1981, 103, 4954.
- 2 I. Yavari and J. D. Roberts, Org. Magn. Reson., 1980, 13, 68.
- 3 G. Morris, J. Am. Chem. Soc., 1980, 102, 428.
- 4 G. W. Kabalka, Synth. Commun., 1980, 10, 93.
- 5 G. W. Kabalka and E. E. Gooch, J. Chem. Soc., Chem. Commun., 1981, 1011.
- 6 G. W. Kabalka, K. A. R. Sastry, and P. G. Pagni, J. Radioanal. Chem., in the press.
- 7 G. W. Kabalka, K. A. R. Sastry, G. W. McCollum, and H. Yoshioka, J. Org. Chem., 1981, 46, 4296.

[†] The ¹⁵N-ammonium hydroxide was prepared by neutralizing ¹⁵NH₄Cl (30—95% enirched) with sodium hydroxide (1 equiv.).

[‡] Commercial grade bleach was standardized and used directly.

[§] The products contained small quantities of the 2-aminoisomers as a consequence of the incomplete regiospecificity of the hydroboration reaction.