Partial Oxidation of Methane by Nitrous Oxide over Molybdenum Oxide supported on Silica

R.-S. biu, M. Iwamoto, and Jack H. Lunsford

Department of Chemistry, Texas A & *M University, College Station, Texas 77843, U.S.A.*

Methanol and formaldehyde were formed **as** major products at **a** moderate conversion level (I 6%) in the partial oxidation of methane by nitrous oxide in the presence **of** water over molybdenum oxide supported on silica.

The partial oxidation of methane by N_2O has been studied extensively, $\frac{1}{2}$ principally in the gas phase. Little success has been achieved in obtaining methanol or formaldehyde in substantial amounts and the main products are CO and *CO,*

even at very low conversion levels. Recent reports² have demonstrated that N_2O is a very effective oxidant in the oxidative dehydrogenation of ethane over supported molybdenum oxides. The O^- ions, formed by surface decomposition

Figure 1. Yield of products as a function of the thermal desorption program following the reaction of CH₄ with O⁻ at 25 °C: \bullet , CH₃OH; \odot , CO₂; \bullet , CH₄; \blacktriangle , C₂H₆; \triangle , C₂H₄.

of N_2O , have been postulated as active species in initiating the catalytic process *via* **a** hydrogen abstraction reaction. Recently e.s.r. studies by Kazanskii and coworkers³ have shown that O^- reacts with methane over various supported metal oxides. In an attempt to understand the role of O^- in the partial oxidation of methane, we investigated both the stoicheiometric reaction of CH₄ with O⁻ and the catalytic oxidation of **CH4** with **N20** over molybdenum oxide supported on silica.

The stoicheiometric reaction of $CH₄$ with $O⁻$ was studied in a conventional gas-circulating system with a catalyst prepared by impregnating silica gel with ammonium heptamolybdate at $pH = 2$. The catalyst which contained 6.6 wt. % Mo was calcined in air for 16 h at 500 °C, heated in 100 Torr of 0, for 30 min at *SO0* "C, heated *in vucuo* at *SO0 'C* and reduced in 100 Torr of CO at 500°C for 30min. The partially reduced catalyst contained Mo^v on the surface, which upon exposure to N_2O gave O^- ions according to reaction (1).

$$
N_2O + Mo^{\nu} \to Mo^{\nu}O^- + N_2 \tag{1}
$$

The O^- ions, characterized by an e.s.r. spectrum having g_{\parallel} = 2.002 and g_{\perp} = 2.019, reacted rapidly with CH₄ at 25 °C and more slowly at -196 °C. No new radicals were detected; however, the reaction products were followed by analysing the gas phase after desorption or decomposition of the surface species, These gas phase products were collected in a cold trap after heating the catalyst for 1 h increments at progressively higher temperatures. The amount of each product, as determined by gas chromatography, is shown in Figure **1.** Methanol was observed as the main product at desorption temperatures exceeding 300 *"C.*

The catalytic oxidation was followed in a continuous-flow reactor which was operated **at** 1 atm. The reactor contained **3** g of 1.7 % Mo/SiO, in a *23* mm **i.d.** Vycor tube, which was connected to a 2 mm i.d. tube so that the products $CH₃OH$ and H_2CO could be quenched, thus reducing subsequent gas phase reactions. In the experiment, helium gas was used as a diluent and the flow rate was controlled at **1.33** ml/s.

a Conversions were calculated at steady state. **b** Trace amounts of C_2H_6 and C_2H_4 were observed in all cases.

Water was introduced from a syringe pump and evaporated in **a** preheater oven. Results are summarized in Table **1.** Under the experimental conditions, silica gel was an order of magnitude less active. The combined 60% selectivity to **CH30fI** and **H2C0** at 16% conversion is considerably better than results reported in the literature.⁴ The 6.6 wt. $\frac{9}{6}$ Mo/SiO₂ catalyst gave qualitatively similar results, although selectivities for CH₃OH and H₂CO were less.

As shown in Table **1,** water **is** required to maintain the selectivities for CH₃OH and H₂CO. The amounts of CH₃OH and H₂CO increased with increasing amounts of water, and no decrease in activity has been observed in the presence of water. The role of water may be twofold. Pernicone et al.⁵ reported that water retards the oxidation of $CH₃OH$ to $H₂CO$ by *0,* over iron molybdate catalysts. The retardation effect by the water in the partial oxidation of $CH₃OH$ by $N₂O$ over $Mo/SiO₂$ has also been observed in our laboratory;⁶ thus, water may inhibit secondary reactions of both **CH30H** and **H,CO.**

In addition, the stoicheiometric results demonstrate that the reaction between O^- and CH_4 on Mo/SiO_2 catalysts leads to the formation of **CH30H.** This may involve **CH30-** ions, and indeed alkoxide ions are formed when C_2-C_4 alkanes react with O⁻ ions on MgO.⁷ The formation of methanol may result from the reaction of these $CH₃O⁻$ ions with water or surface protons. One cannot, however, exclude the possibility that at elevated temperatures hydroxyl radicals derived from water or **Si-OH** groups react with **CH3-** radicals to form $CH₃OH.$

This work has been supported by the National Science Foundation.

Received, 10th September 1981; Com. 1080

References

- 1 A. A. Borisov, V. **M.** Zanianskii, K. Potmishil, **G.** 1. Skachkov, and **V. A.** Foteenkov, *Kixet. Kurd.,* 1977, **8,** 307; J. **W.** Falconer, D. E. Hoare, and R. Overend, *Combust. Flame*, 1973, **21,** 339; P. **L.** Robinson and E. J. Smith, *J. Cliem. Soc.,* 1952, **3895.**
- 2 T. J. Yang and J. H. Lunsford, *J. Catal.*, 1980, 63, 505; M. B. Ward, **M.** J. Lin, and J. **H.** Lunsford, *J. Cutai.,* 1977, **50,** 306.
- **3** N. **1.** kipatkina, V, **A.** Shvets, and V. B Kazanskii, *Kinct. Kcllnl.,* 1978, 19, 979; S. L. Kaliaguire, B. N. Shelimov, and V. B. Kazanskii, *J. Catal.,* 1978, *55,* 384.
- V. Ya. Shtern, 'The Gas Phase Oxidation of Hydrocarbons,' Pergamon, Oxford. 1964; B. H. **McConkey** and P. **K.** Wilkenson, *Ind. Eng. Chpm., Process Dey. Dev.,* 1967, **6,** 437; G. **A.** Luckett and B. Miles. *Cornbust. Flume,* 1976, **26,** 299.
- *5* N. Pernicone, *J. Less-Common Met.,* 1974, **36,** 289; N. Pernicone, F. Lazzerin, G. Liberti, and G. Lanzavecchia, *J. Catal.*, 1969, **14,** 293.
- 6 T. J. Yang and J. H. Lunsford, unpublished results.
- 7 K. Aika and **J.** H. Lunsford, *J. Phys. Chem.,* 1977, **81,** 1393.