Stereochemistry of lsoflavone Reduction during the Biosynthesis of (+) and (-)-Pterocarpans: ²H N.M.R. Studies on the Biosynthesis of $(+)$ -Pisatin and $(-)$ -Medicarpin

Stephen W. Banks, Melanie J. Steele, David Ward, and Paul M. Dewick"

Department of Pharmacy, University of Nottingham, Nottingham NG7 2RD, *U.K.*

2H N.m.r. spectroscopy has indicated the overall *Z* addition **of** hydrogen to the double bond of formononetin **(3)** during the biosynthesis of (+)-(6aR,llaR)-pisatin **(6),** in contrast with an *E* addition during production of $(-)$ - $(6aR,11aR)$ -medicarpin (1) .

Pterocarpan phytoalexins are synthesized by a wide range of leguminous plants challenged by fungi, viruses, or a variety of abiotic materials.¹ Feeding experiments with radiolabelled precursors in abiotically induced plants^{2,3} have demonstrated that $(-)$ - $(6aR, 11aR)$ -medicarpin (1) ⁺ is biosynthesized from the isoflavone formononetin **(3)** *via* 2',7-dihydroxy-4' methoxyisoflavone *(5)* followed by a stereospecific reduction sequence involving the corresponding isoflavone and most likely the isoflavanol. In CuCl₂-treated fenugreek (Trigonella *foenum-graecum*) seedlings an overall *E* addition of hydrogen to [2-2H]-(5) was observed by the use of **2H** n.m.r. spectroscopy.⁴ To investigate further this reduction process, and to explore the potential of 2H n.m.r. spectroscopy in plant biosynthetic studies, [2-2H]formononetin **(4)** has been synthesized and tested as a pterocarpan precursor. Its mode of incorporation into $(-)$ - $(6aR,11aR)$ -medicarpin **(1)** in *T*. *fuenum-graecum* and into the 6a-hydroxypterocarpan of the enantiomeric series $(+)$ - $(6aR,11aR)$ -pisatin (6) [†] in the garden pea *(Pisum sativum)* has been established, and the results compared.

4-Day-old pea seedlings (from 560 g dry seeds), deprived of endosperm tissue, were treated with aqueous $CuCl₂(3 \times 10^{-3} M)$ *via* the roots for 12 h. The CuCl₂ solution was then replaced with a solution of the Na salts of $[2²H]$ formononetin (96%) ²H by¹H n.m.r.; 140 mg) and $[Me¹⁴C]$ formononetin (0.45 mg; 2.4×10^6 d.p.m.). Extraction of the plant tissue after a 36 h feeding period yielded $(+)$ -pisatin (40 mg) of specific activity 3.40×10^5 d.p.m./mmol, corresponding to a dilution value of 13.2, and thus $7.6\frac{9}{9}$ ²H.

The ¹H n.m.r. spectra of pterocarpans have been well studied7 and analysis of coupling constants has established

the $(-)$ -pterocarpan solution conformation as in Figure 1(A); this conformation has been shown to occur in the solid state also by X -ray crystallography.⁸ The alternative conformation (B) does not accommodate the n.m.r. data.7 W-Coupling of 11a-H with 6-H_n (0.6 Hz) is clearly visible in 250 MHz spectra. 6a-Hydroxypterocarpans may be expected to adopt a similar conformation in solution, but no evidence for this has been presented. Substitution of 6a-H by OH simplifies the heterocyclic portion of the H n.m.r. spectrum, and W-coupling (0.7 Hz) between lla-H and the lower-field 6-H doublet at δ 4.00 is again visible in the spectrum of pisatin. It is likely then that the conformation of pisatin in solution is analogous to that of medicarpin *[i.e. (C)* rather than *(D)]*. Further, lanthanide-induced shift experiments with Eu(fod)₃ [tris-

Pterocarpans having a large negative [α **]** are assigned the $\frac{1}{6}$ caR, 11aR) configuration $\frac{3}{6}$ ($\frac{1}{16}$)-6a-hydroxypterocarpans are re-
garded as having the same absolute configuration,⁶ but the priority
rules give a (6aS,11aS) nomenclature.

Figure 1. Newman projections along 6a-6 bond for possible conformations of (-)-medicarpin **(A** and B) and (+)-pisatin *(C* and D).

(6,6,7,7,8,8-heptafluoro-2,2-dimethyloctane-3,5-dionato)europium] show that the low-field 6-H of pisatin is shifted more than the higher-field one, again indicating conformation *(C)* rather than **(D),** since in the latter case, equivalent shifts might be expected. Europium-induced shift values (2.1 and 1.8 p.p.m.) were somewhat lower than predicted and suggest that the pisatin–Eu(fod)₃ equilibrium lies on the side of the non-complexed species.

The ²H n.m.r. spectrum[†] for the biosynthetically derived $(+)$ -pisatin showed one signal only, at 4.03 p.p.m. [corresponding to $6-H_n$; $\delta (6-H_s) = 4.18$ p.p.m.]. Thus, the elements of water have been added to the double bond of formononetin in an overall *2* manner. Pisatin is biosynthetically derived by 6a-hydroxylation of maackiain (7) followed by methylation,⁸ maackiain arising from formononetin by way of **3',7** dihydroxy-4'-methoxy-, **7-hydroxy-3',4'-methylenedioxy-,** and **2',7-dihydroxy-4',5'-methylenedioxy-isoflavones,** and subsequent reduction.¹⁰ Recent studies¹¹ have further established that $(+)$ -pisatin is produced by hydroxylation of $(+)$ - $(6aS,-)$ **¹**1 as)-maackiain **(7)** with retention of configuration at C-6a. The possible involvement of pterocarp-6-ene or pterocarp-baene derivatives between pterocarpans and 6a-hydroxyptero-

1 Proton-noise-decoupled **2H** n.m.r. spectra were run at 38.4 MHz in CHCI₃ soln. using natural abundance CDCI₃ as internal standard.

carpans and a **dehydrogenation-hydration** mechanism can be excluded.¹¹ Hence, since $(+)$ -maackiain is an intermediate between formononetin and $(+)$ -pisatin, it may be inferred that the biosynthesis of $(+)$ -maackiain must involve an overall *2* addition of hydrogen to the double bond. This contrasts with the overall *E* addition of hydrogen to the double bond of the isoflavone (5) observed during the biosynthesis of $(-)$ medicarpin,⁴ and confirmed by a similar experiment using [2-2H]formononetin. Again, the **2H** n.m.r. spectrum showed only one signal corresponding to $6-H_R$.

This means that the stereochemistry of the reduction process leading to $(+)$ -maackiain and $(-)$ -medicarpin is different, and not merely similar reduction but from the opposite face of the isoflavone. If this is a general feature of pterocarpan biosynthesis, *i.e.* that $(-)$ -pterocarpans are produced by *E* reduction and $(+)$ -pterocarpans by Z reduction, it could be reflected in the preponderance of $(-)$ -pterocarpans over $(+)$ isomers in nature.12 **A** small number of plants though are known to accumulate both $(+)$ - and $(-)$ -isomers. Except for $(+)$ -pisatin, all the pterocarpans *acting as phytoalexins* so far reported appear to have negative optical rotations. It is an unusual feature of *P. sativum* that a minor phytoalexin produced simultaneously with $(+)$ -pisatin is $(-)$ -maackiain.^{11,13} Unfortunately, the very small amounts of $(-)$ -maackiain produced do not permit comparison of its biosynthesis with that of $(+)$ -pisatin by the present method.

We thank the **S.R.C.** for financial support, and Dr, H. Booth, Chemistry Department, for helpful discussions

Received, 15th October 1981, Corn. 1216

References

- **¹**J. B. Harborne and J. L. Ingham, in 'Biochemical Aspects of Plant and Animal Coevolution,' ed. J. B. Harborne, Academic Press, London and New York, 1978, p. 343.
- 2 **P. M.** Dewick, *Phytochemistry,* 1977, **16,** 93.
- 3 P. M. Dewick and M. Martin, *Phytochemistry,* 1979, **18,** 591, 597.
- **4** P. **M.** Dewick and D. Ward, *J. Chem. Soc., Chem. Commun.,* 1977, 338.
- *5* S. Ito, *Y.* Fujise and A. Mori, *Chem. Commun.,* 1965, 595.
- **6** W. Klyne and J. Buckingham, 'Atlas of Stereochemistry,' 2nd edn., Vol. **1,** Chapman and Hall, London, 1978, p. 179.
- 7 K. *G.* R. Pachler and W. **G.** E. Underwood, *Tetrahedron,* 1967, **23,** 1817.
- 8 C. DeMartinis, M. F. Mackay, and B. J. Poppleton, *Tetuahedron,* 1978, **34,** 1849.
- 9 P. M. Dewick and S. W. Banks, *Planta Medica,* 1980, **39,** 287.
- 10 P. M. Dewick and D. Ward, *Phytorhemistry,* 1978, **17,** 1751.
- 11 **P. M.** Dewick and S. W. Banks, unpublished.
- 12 P. **M.** Dewick, in 'Recent Advances in Flavonoid Research, 1975-80,' eds. **J.** B. Harborne and T. **J.** Mabry, Chapman and Hall, London, 1981, in the press.
- 13 A. Stoessl, *Canad. J. Biochem.,* 1972, *50,* 107.