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Stereochemistry of Isoflavone Reduction during the Biosynthesis of (1)-
and (—)-Pterocarpans: ?H N.M.R. Studies on the Biosynthesis of

(+)-Pisatin and (—)-Medicarpin

Stephen W. Banks, Melanie J. Steele, David Ward, and Paul M. Dewick”
Department of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.

2H N.m.r. spectroscopy has indicated the overall Z addition of hydrogen to the double bond of
formononetin (3) during the biosynthesis of ( +)-(6aR,11aR)-pisatin (6), in contrast with an £ addition

during production of ( —)-(6aR,11aR)-medicarpin (1).

Pterocarpan phytoalexins are synthesized by a wide range of
leguminous plants challenged by fungi, viruses, or a variety
of abiotic materials.! Feeding experiments with radiolabelled
precursors in abiotically induced plants?® have demonstrated
that (—)-(6aR,11aR)-medicarpin (1)t is biosynthesized from
the isoflavone formononetin (3) via 2’,7-dihydroxy-4'-
methoxyisoflavone (5) followed by a stereospecific reduction
sequence involving the corresponding isoflavone and most
likely the isoflavanol. In CuCl,-treated fenugreek (Trigonella
Joenum-graecum) seedlings an overall E addition of hydrogen
to [2-2H]-(5) was observed by the use of 2H n.m.r. spectro-
scopy.* To investigate further this reduction process, and to
explore the potential of 2H n.m.r. spectroscopy in plant
biosynthetic studies, [2-2H ]formononetin (4) has been syn-
thesized and tested as a pterocarpan precursor. Its mode of
incorporation into (—)-(6aR,11aR)-medicarpin (1) in T.
Sfoenum-graecum and into the 6a-hydroxypterocarpan of the
enantiomeric series (+)-(6aR,11aR)-pisatin (6)1 in the garden
pea (Pisum sativum) has been established, and the results
compared.

4-Day-old pea seedlings (from 560 g dry seeds), deprived of
endosperm tissue, were treated with aqueous CuCl, (3 X 1073 M)
via the roots for 12 h. The CuCl, solution was then replaced
with a solution of the Na salts of [2-2H Jformononetin (969
2H by 'H n.m.r. ; 140 mg) and [Me-*C]formononetin (0.45 mg;
2.4 x 108 d.p.m.). Extraction of the plant tissue after a 36 h
feeding period yielded (+)-pisatin (40 mg) of specific activity
3.40 x 10° d.p.m./mmol, corresponding to a dilution value of
13.2, and thus 7.6 % 2H.

The 'H n.m.r. spectra of pterocarpans have been well
studied” and analysis of coupling constants has established

1 Pterocarpans having a large negative [«]p are assigned the
(6aR,11aR) configuration;® (—)-6a-hydroxypterocarpans are re-
garded as having the same absolute configuration,® but the priority
rules give a (6a.S,11aS) nomenclature.

M R=H (3) R*= RZ=H
(2) R = COMe %) R'=z2H, RZ=H
{5) R' = H, RZ = OH

(6) (7

the (—)-pterocarpan solution conformation as in Figure 1(A);
this conformation has been shown to occur in the solid state
also by X-ray crystallography.® The alternative conformation
(B) does not accommodate the n.m.r. data.” W-Coupling of
11a-H with 6-H,, (0.6 Hz) is clearly visible in 250 MHz spectra.
6a-Hydroxypterocarpans may be expected to adopt a similar
conformation in solution, but no evidence for this has been
presented. Substitution of 6a-H by OH simplifies the hetero-
cyclic portion of the 'H n.m.r. spectrum, and W-coupling
(0.7 Hz) between 1la-H and the lower-field 6-H doublet at
0 4.00 is again visible in the spectrum of pisatin. It is likely
then that the conformation of pisatin in solution is analogous
to that of medicarpin [i.e. (C) rather than (D)]. Further,
lanthanide-induced shift experiments with Eu(fod); [tris-
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Figure 1. Newman projections along 6a—-6 bond for possible
conformations of (—)-medicarpin (A and B) and (+)-pisatin
(C and D).

(6,6,7,7,8,8-heptafluoro-2,2-dimethyloctane-3,5-dionato)euro-
pium} show that the low-field 6-H of pisatin is shifted more
than the higher-field one, again indicating conformation (C)
rather than (D), since in the latter case, equivalent shifts might
be expected. Europium-induced shift values (2.1 and 1.8
p.p.m.) were somewhat lower than predicted and suggest that
the pisatin-Eu(fod); equilibrium lies on the side of the
non-complexed species.

The 2H n.m.r. spectrumi for the biosynthetically derived
(+)-pisatin showed one signal only, at 4.03 p.p.m. [corre-
sponding to 6-H,; 6 (6-H,) = 4.18 p.p.m.]. Thus, the elements
of water have been added to the double bond of formononetin
in an overall Z manner. Pisatin is biosynthetically derived by
6a-hydroxylation of maackiain (7) followed by methylation,®
maackiain arising from formononetin by way of 3,7-
dihydroxy-4’-methoxy-, 7-hydroxy-3’,4’-methylenedioxy-, and
2’,7-dihydroxy-4’,5’-methylenedioxy-isoflavones, and subse-
quent reduction.® Recent studies'! have further established
that (+)-pisatin is produced by hydroxylation of (+)-(6aS,-
11aS)-maackiain (7) with retention of configuration at C-6a.
The possible involvement of pterocarp-6-ene or pterocarp-6a-
ene derivatives between pterocarpans and 6a-hydroxyptero-

i Proton-noise-decoupled 2H n.m.r. spectra were run at 38.4 MHz
in CHCI; soln. using natural abundance CDCIl; as internal
standard.
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carpans and a dehydrogenation-hydration mechanism can be
excluded.!! Hence, since (4 )-maackiain is an intermediate
between formononetin and (4)-pisatin, it may be inferred
that the biosynthesis of (+)-maackiain must involve an overall
Z addition of hydrogen to the double bond. This contrasts
with the overall E addition of hydrogen to the double bond of
the isoflavone (5) observed during the biosynthesis of (—)-
medicarpin,* and confirmed by a similar experiment using
[2-2H Jformononetin. Again, the 2H n.m.r. spectrum showed
only one signal corresponding to 6-H,,.

This means that the stereochemistry of the reduction process
leading to (+-)-maackiain and (—)-medicarpin is different, and
not merely similar reduction but from the opposite face of the
isoflavone. If this is a general feature of pterocarpan bio-
synthesis, i.e. that (—)-pterocarpans are produced by E
reduction and (+)-pterocarpans by Z reduction, it could be
reflected in the preponderance of (—)-pterocarpans over (--)-
isomers in nature.!® A small number of plants though are
known to accumulate both (-+)- and (—)-isomers. Except for
(+)-pisatin, all the pterocarpans acting as phytoalexins so far
reported appear to have negative optical rotations. It is an
unusual feature of P. sativum that a minor phytoalexin pro-
duced simultaneously with (--)-pisatin is (—)-maackiain.t*/1
Unfortunately, the very small amounts of (--)-maackiain
produced do not permit comparison of its biosynthesis with
that of (4-)-pisatin by the present method.
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