N.M.R. Evidence for the Existence of P₄S₈

Jean-Jacques Barieux^a and Michel C. Démarcq^b

^a*P.C. Ugine Kuhlmann, Centre de Recherche de L yon, 69310 Pierre- Be'nite, France* **^b***lnstitut National des Sciences Applique'es, 20, Avenue Albert Einstein, 6962 1 Villeurbanne, France*

N.m.r. evidence indicates that the primary product of the desulphuration of P_4S_9 by Ph_3P is P_4S_8 , a new species **of** limited stability.

 P_4S_{10} has been reduced by a variety of P^{III} compounds to P_4S_9 or P_4S_7 ,¹⁻³ but no proof could be obtained of the intermediate formation of P_4S_8 ², a hitherto unknown phosphorus sulphide. This paper reports a detailed n.m.r. study of the reduction of P_4S_9 by triphenylphosphine.

 CS_2 solutions of P_4S_9 (1-6 g 1⁻¹) were allowed to react at room temp. with Ph₃P (molar ratio, ρ , of Ph₃P/P₄S₉ is 0.4– **1.45).** Following a temporary initial cloudiness the solutions became clear again and were analysed by Fourier transform 31P n.m.r. spectroscopy **(80.76Hz)** after **a** short time; the following signals were observed (positive δ are downfield from

the external standard H_3PO_4): (a) a broad line, δ 41.9 p.p.m., due to Ph₃PS. Residual Ph₃P (δ -5.9 p.p.m.) is never visible, even when the reaction time is **as** short as 5 min; hence the desulphuration by Ph3P is a fast process; (b) the **AB,** multiplet of P_4S_9 between δ 55.9 and 64.4 p.p.m.;⁴ (c) two non-attributed very weak singlets, δ 162 and 167.2 p.p.m. (only for $\rho > 1$), which we shall neglect; (d) two equivalent singlets (unresolved doublets), δ 84.6 and 110.9 p.p.m., belonging to $P_4S_7^5$ (on standing, crystals of this sulphide separate from the solution) ; (e) a pair of triplets, 6 **13.4** and **135.4** p.p.m., *J* 82.8 **Hz,** belonging to no previously reported phosphorus sulphide

Table 1. Estimation of *n* from the n.m.r. balance.^a

Accumulation time/min	No. of scans	Integrated P signals $(\%$ of total P)					Estimated
		P_4S_7	P_4S_9	P_4S_n	Unknown	Ph_3P	n value ^c
20 37 86 124	59 10 258 372	5.0 5.2 5.5 5.2	54.5 58.9 60.2 59.9	29.5 23.5 21.7 18.8	Non-visible Visible Visible 3.6 ^b	1.0 12.4 12.6 12.5	7.80 7.54 7.45 7.28

^a Initial concentrations: $[P_4S_9]$ 0.0147 M, $[Ph_3P]$ 0.00754 M; pulse delay 20 s. ^b Probably not all signals are visible. ^c Given by the 'ideal'

equation: $2[P_4S_7] + (9 - n)\overline{[P_4S_n]} = {\overline{[P_4S_7] + [P_4S_9] + [P_4S_n] \times 0.00754/0.0147.}}$

Figure 1. Phosphorus sulphides considered.

and typical of an A_2X_2 system. These lines are indicative of a P_4S_n molecule, bearing two pairs of equivalent P atoms. The stability of this new phosphorus sulphide is limited, even in dilute solution. Its n.m.r. signals fade slowly on standing and disappear completely within a few days at room temp. (or a few weeks at 4 *"C),* giving new, non identifiable n.m.r. lines. The P_4S_7/P_4S_n molar ratio was found to increase with the ρ ratio; this indicates that P_4S_n is an intermediate in the reduction of P_4S_9 to P_4S_7 ; hence $7 \le n \le 9$.

Assuming that, as in every established phosphorus sulphide, each P atom in P_4S_n can be only tri- or tetra-co-ordinated and is linked, either directly or through *one* **S** atom, to *each* of the three other P atoms, only three formulae are consistent with the n.m.r. spectrum, *viz.* the adamantanoid P_4S_8 , iso- P_4S_9 , and iso- P_4S_7 (see Figure 1), all of C_{2v} symmetry and structurally related either to the initial P_4S_9 or to the ultimate product P_4S_7 .

The following evidence favours P_4S_8 as the primary product: (a) its derivation from P_4S_9 is straightforward (abstraction of one terminal **S** atom, with preservation of the cage); further, the *J* values of both compounds are similar $(P_4S_9 96 Hz);^{4,5}$ (b) P_4S_9 is quite stable in CS_2 solutions (no n.m.r. change after 26 days at room temp.); its fast isomerization to a metastable species *(vide supra),* simply upon adding a little Ph_3P , is therefore hardly credible; (c) if iso- P_4S_7 were the intermediate, its life would have to be much shorter, for its isomerization to normal P_4S_7 , which is rapid while Ph_3P is present, would have no reason to slow down after the phosphine has been used up.

However, it is not easy to define P_4S_n unequivocally because its poor stability precludes its isolation. Instead, we tried to derive *n* from the integrated n.m.r. spectra. Here again, the instability of P_4S_n was an obstacle (long accumulation was not possible). However, as shown in Table 1, the estimated *n* values clearly converge towards $n = 8$ when the accumulation time becomes shorter. This, to our mind, justifies the conclusion that formation of P_4S_8 (most probably adamantanoid) is actually the primary step in the reduction of P_4S_9 .

It also appears from Table 1 that the slow secondary decomposition of P_4S_8 gives rise to more P_4S_9 but not to **P4S,** (or only to a very little). Hence, the whole process can

be described by equations (1) and (2). The second-order
\n
$$
P_4S_9 \xrightarrow{k_1(fast)} P_4S_8 \xrightarrow{k_2(fast)} P_4S_8 \xrightarrow{k_3(fast)} P_4S_7
$$
\n(1)

adamantanoid adamantanoid non-adamantanoid stable unstable

$$
P_4S_8 \xrightarrow{k_3 \text{ (slow)}} P_4S_9 + \text{unknown products} \tag{2}
$$

kinetic constants k_1 and k_2 were estimated to be approximately equal. By contrast, the desulphuration of P_4S_{10} to P_4S_9 is fairly selective ^{1,2} (e.g. treating P_4S_{10} with 0.875 equiv. of Ph_3P in CS_2 at room temp. gave us P_4S_9 as the only product). On the other hand, since none of the reduction products of $P_4S_7^{6,7,10,12,13}$ were detected in the present study, the reactivity order towards Ph_3P should be $P_4S_{10} > P_4S_9 \approx P_4S_8 > P_4S_7$.

The apparent cleanness of the second step of equation (1) suggests that P_4S_7 could result from direct extrusion of the bridge S atom in the $P^{III}-S-P^{III}$ group of $P₄S₈$, much in the same way as organic PI11 compounds desulphurize episulphides to alkenes⁸ or 9-thiabicyclo^[3.3.1] nonane to *cis*-bicyclo^[3.3.0] octane.⁹

Dilution slows down the decomposition of P_4S_8 ; hence, we suspect it to take place or start by bimolecular sulphur atom transfer between two P_4S_8 molecules (est. k_3 ca. 1.4 l mol⁻¹ min⁻¹ at room temp.).

 P_4S_9 is known to dissociate upon melting (at 255-- 260° C);^{2,11} we found that only P₄S₇ and P₄S₁₀ are produced, although P_4S_8 is a probable intermediate, even when the melting time is very short *(ca.* 5 s just above the m.p.).

Received, 20th July 1981; Corn. **857**

References

- 1 M. Meisel and H. Grunze, *2. Anorg. Allg. Chem.,* 1969, *366,* 152.
- 2 M. Meisel and H. Grunze, *Z. Anorg. Allg. Chem.,* 1970, **373,** 265.
- 3 W. Zongming, W. Xieqing, and **1.** Wanzhen, Proc. VIIth Intern. Conf. on Raman Spectroscopy, Ottawa, 1980, p. 132.
- 4 E. R. Andrew, W. Vennart, **G.** Bonnard, R. M. Croiset, **M.** Demarcq, and E. Mathieu, *Chem. Phys. Lett.,* 1976, **43,** 317.
- 5 C. Brevard and M. *C.* Demarcq, *Chem. Phys. Lett.,* 1981, 82, 167.
- 6 A. M. Griffin and G. M. Sheldrick, *Acta Crystallogr., Sect. B,* 1975, **31,** 2738.
- 7 **G.** M. Sheldrick, personal communication.
- **8** N. P. Neureiter and **F. G.** Bordwell, *J. Am. Chem. Soc.,* 1959, **81,** 578; D. B. Denney and M. **J.** Boskin, *ibid.,* 1960, 82,4736.
- 9 **E. J.** Corey and E. Block, *J. Org. Chem.* 1969, **34,** 1233.
- **10 J.-J.** Barieux and M. *C.* Demarcq, unpublished results.
- 11 H. Vincent, *Bull. Soc. Chim. Fr.,* 1972, 4517; **W.** Vincent and *C.* Vincent-Forat, *ibid.,* 1973, 499.
- 12 R. Blachnik and **A.** Hoppe, *2. Anorg. Allg. Chem.,* 1979,457, 91.
- ¹³**W.** Bues, M. Somer, and W. Brockner, *2. Anorg. Allg. Chem.,* 1981, **476,** 153.