N.M.R. Evidence for the Existence of P₄S₈

Jean-Jacques Barieux^a and Michel C. Démarcq^b

^a P.C. Ugine Kuhlmann, Centre de Recherche de Lyon, 69310 Pierre-Bénite, France ^b Institut National des Sciences Appliquées, 20, Avenue Albert Einstein, 69621 Villeurbanne, France

N.m.r. evidence indicates that the primary product of the desulphuration of P_4S_9 by Ph_3P is P_4S_8 , a new species of limited stability.

 P_4S_{10} has been reduced by a variety of $P^{\rm III}$ compounds to P_4S_9 or $P_4S_7,^{1-3}$ but no proof could be obtained of the intermediate formation of $P_4S_8,^2$ a hitherto unknown phosphorus sulphide. This paper reports a detailed n.m.r. study of the reduction of P_4S_9 by triphenylphosphine.

CS₂ solutions of P_4S_9 (1—6 g l⁻¹) were allowed to react at room temp. with Ph_3P (molar ratio, ρ , of Ph_3P/P_4S_9 is 0.4—1.45). Following a temporary initial cloudiness the solutions became clear again and were analysed by Fourier transform ³¹P n.m.r. spectroscopy (80.76 Hz) after a short time; the following signals were observed (positive δ are downfield from

the external standard H_3PO_4): (a) a broad line, δ 41.9 p.p.m., due to Ph₃PS. Residual Ph₃P (δ –5.9 p.p.m.) is never visible, even when the reaction time is as short as 5 min; hence the desulphuration by Ph₃P is a fast process; (b) the AB₃ multiplet of P₄S₉ between δ 55.9 and 64.4 p.p.m.; (c) two non-attributed very weak singlets, δ 162 and 167.2 p.p.m. (only for ρ > 1), which we shall neglect; (d) two equivalent singlets (unresolved doublets), δ 84.6 and 110.9 p.p.m., belonging to P₄S₇⁵ (on standing, crystals of this sulphide separate from the solution); (e) a pair of triplets, δ 13.4 and 135.4 p.p.m., J 82.8 Hz, belonging to no previously reported phosphorus sulphide

Table 1. Estimation of n from the n.m.r. balance.^a

Accumulation time/min	No. of scans	Integrated P signals (% of total P)					Estimated
		P_4S_7	P_4S_9	P_4S_n	Unknown	Ph_3P	n value ^c
20 37 86 124	59 110 258 372	5.0 5.2 5.5 5.2	54.5 58.9 60.2 59.9	29.5 23.5 21.7 18.8	Non-visible Visible Visible 3.6 ^b	11.0 12.4 12.6 12.5	7.80 7.54 7.45 7.28

^a Initial concentrations: $[P_4S_9]$ 0.0147 M, $[Ph_9P]$ 0.00754 M; pulse delay 20 s. ^b Probably not all signals are visible. ^c Given by the 'ideal' equation: $2[P_4S_7] + (9 - n)[P_4S_n] = \{[P_4S_7] + [P_4S_9] + [P_4S_n]\} \times 0.00754/0.0147$.

Figure 1. Phosphorus sulphides considered.

and typical of an A_2X_2 system. These lines are indicative of a P_4S_n molecule, bearing two pairs of equivalent P atoms. The stability of this new phosphorus sulphide is limited, even in dilute solution. Its n.m.r. signals fade slowly on standing and disappear completely within a few days at room temp. (or a few weeks at 4 °C), giving new, non identifiable n.m.r. lines. The P_4S_7/P_4S_n molar ratio was found to increase with the ρ ratio; this indicates that P_4S_n is an intermediate in the reduction of P_4S_9 to P_4S_7 ; hence $7 \le n \le 9$.

Assuming that, as in every established phosphorus sulphide, each P atom in P_4S_n can be only tri- or tetra-co-ordinated and is linked, either directly or through *one* S atom, to *each* of the three other P atoms, only three formulae are consistent with the n.m.r. spectrum, *viz*. the adamantanoid P_4S_8 , iso- P_4S_9 , and iso- P_4S_7 (see Figure 1), all of C_{2v} symmetry and structurally related either to the initial P_4S_9 or to the ultimate product P_4S_7 .

The following evidence favours P_4S_8 as the primary product: (a) its derivation from P_4S_9 is straightforward (abstraction of one terminal S atom, with preservation of the cage); further, the J values of both compounds are similar $(P_4S_9 96 \text{ Hz})$; 4,5 (b) P_4S_9 is quite stable in CS_2 solutions (no n.m.r. change after 26 days at room temp.); its fast isomerization to a metastable species (*vide supra*), simply upon adding a little Ph_3P , is therefore hardly credible; (c) if iso- P_4S_7 were the intermediate, its life would have to be much shorter, for its isomerization to normal P_4S_7 , which is rapid while Ph_3P is present, would have no reason to slow down after the phosphine has been used up.

However, it is not easy to define P_4S_n unequivocally because its poor stability precludes its isolation. Instead, we tried to derive n from the integrated n.m.r. spectra. Here again, the instability of P_4S_n was an obstacle (long accumulation was not possible). However, as shown in Table 1, the estimated n values clearly converge towards n=8 when the accumulation time becomes shorter. This, to our mind, justifies the conclusion that formation of P_4S_8 (most probably adamantanoid) is actually the primary step in the reduction of P_4S_8 .

It also appears from Table 1 that the slow secondary decomposition of P_4S_8 gives rise to more P_4S_9 but not to P_4S_7 (or only to a very little). Hence, the whole process can be described by equations (1) and (2). The second-order

$$P_{4}S_{9} \xrightarrow{+ Ph_{3}P/-Ph_{3}PS} P_{4}S_{8} \xrightarrow{+ Ph_{3}P/-Ph_{3}PS} P_{4}S_{7}$$
 (1)

adamantanoid adamantanoid non-adamantanoid stable unstable stable

$$P_4S_8 \xrightarrow{k_3 \text{ (slow)}} P_4S_9 + \text{unknown products}$$
 (2)

kinetic constants k_1 and k_2 were estimated to be approximately equal. By contrast, the desulphuration of P_4S_{10} to P_4S_9 is fairly selective 1,2 (e.g. treating P_4S_{10} with 0.875 equiv. of $P_{13}P_{10}$ in CS_2 at room temp. gave us P_4S_9 as the only product). On the other hand, since none of the reduction products of $P_4S_7^{6,7,10,12,13}$ were detected in the present study, the reactivity order towards $P_{13}P_{10}$ should be $P_4S_{10} > P_4S_9 \approx P_4S_8 > P_4S_7$.

The apparent cleanness of the second step of equation (1) suggests that P_4S_7 could result from direct extrusion of the bridge S atom in the P^{III} –S- P^{III} group of P_4S_8 , much in the same way as organic P^{III} compounds desulphurize episulphides to alkenes⁸ or 9-thiabicyclo[3.3.1]nonane to *cis*-bicyclo[3.3.0]-octane.⁹

Dilution slows down the decomposition of P_4S_8 ; hence, we suspect it to take place or start by bimolecular sulphur atom transfer between two P_4S_8 molecules (est. k_3 ca. 1.4 l mol⁻¹ min⁻¹ at room temp.).

 P_4S_9 is known to dissociate upon melting (at 255—260 °C);^{2,11} we found that only P_4S_7 and P_4S_{10} are produced, although P_4S_8 is a probable intermediate, even when the melting time is very short (*ca.* 5 s just above the m.p.).

Received, 20th July 1981; Com. 857

References

- M. Meisel and H. Grunze, Z. Anorg. Allg. Chem., 1969, 366, 152.
- 2 M. Meisel and H. Grunze, Z. Anorg. Allg. Chem., 1970, 373, 265.
- 3 W. Zongming, W. Xieqing, and I. Wanzhen, Proc. VIIth Intern. Conf. on Raman Spectroscopy, Ottawa, 1980, p. 132.
- 4 E. R. Andrew, W. Vennart, G. Bonnard, R. M. Croiset, M. Démarcq, and E. Mathieu, *Chem. Phys. Lett.*, 1976, 43, 317.
- 5 C. Brevard and M. C. Démarcq, Chem. Phys. Lett., 1981, 82, 167.
- 6 A. M. Griffin and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1975, 31, 2738.
- 7 G. M. Sheldrick, personal communication.
- 8 N. P. Neureiter and F. G. Bordwell, J. Am. Chem. Soc., 1959,
 81, 578; D. B. Denney and M. J. Boskin, ibid., 1960, 82, 4736.
- 9 E. J. Corey and E. Block, J. Org. Chem. 1969, 34, 1233.
- 10 J.-J. Barieux and M. C. Démarcq, unpublished results.
- H. Vincent, Bull. Soc. Chim. Fr., 1972, 4517; H. Vincent and C. Vincent-Forat, ibid., 1973, 499.
- 12 R. Blachnik and A. Hoppe, Z. Anorg. Allg. Chem., 1979, 457, 91.
- 13 W. Bues, M. Somer, and W. Brockner, Z. Anorg. Allg. Chem., 1981, 476, 153.