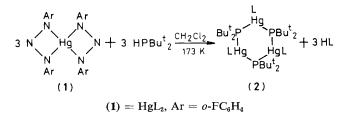
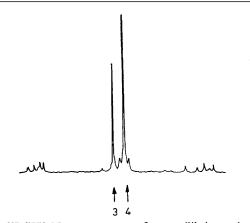
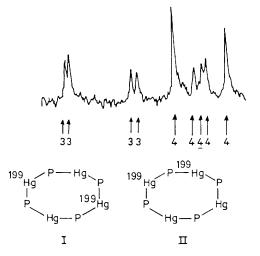
193

Novel 6- and 8-Membered Hg–P Rings


Johann Eichbichler and Paul Peringer*


Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Reaction of HgL₂ [HL = 1,3-bis(*o*-fluorophenyl)triazene] with secondary phosphines yields the first monocyclic 6- and 8-membered M–P rings [Hg_n(μ_2 -R₂P)_nL_n] (n = 3, R = Bu^t or cyclohexyl; (n = 4, R = cyclohexyl or Ph) which are characterized by ¹H, ³¹P, and ¹⁹⁹Hg n.m.r. spectroscopy.


Four-membered monocyclic structures $(M-P)_2$ are well known in transition and main group metal phosphido compounds; furthermore some $(M-P)_3$ rings with or without metal-metal bonds have been described.¹ We report here the first (mono)cyclic μ -phosphido mercury complexes with six- and eightmembered Hg-P ring structures.

Reaction of equimolar amounts of HgL₂ (1) and HPBut₂ leads to stable orange crystals, m.p. 182–187 °C, in almost quantitative yield. Chemical analysis and mass spectra indicate substitution of one L by PBut₂ (highest m/e 578, LHgPBut₂). A ¹H n.m.r. pseudo-triplet of the But groups

Figure 1. ³¹P {¹H } N.m.r. spectrum of an equilibrium mixture of $[Hg_3(\mu_2 \cdot Cy_2 P)_3 L_3]$, labelled 3 and $[Hg_4(\mu_2 - Cy_2 P)_4 L_4]$, labelled 4. The n.m.r. spectra were measured on a multinuclear Bruker WP-80 FT spectrometer and calculated using PANIC on a Bruker aspect 2000 computer.

Figure 2. ¹⁹⁹Hg Satellite pattern of the right-hand side of the ³¹P n.m.r. spectrum in Figure 1. Peaks labelled 3 belong to $[Hg_3(\mu_2-Cy_2P)_3L_3]$, those labelled 4 to $[Hg_4(\mu_2-Cy_2P)_4L_4]$ (isotopomer with one ¹⁹⁹Hg atom in each case). The peak marked 4 is attributed to the isotopomer I (p = 3.9%) containing two ¹⁹⁹Hg atoms; the isotopomer I is not resolved. (Substituents are omitted from the drawings of the isotopomers.)

indicates a P-Hg-P bond sequence,² in agreement with the ¹⁹⁹Hg n.m.r. spectrum. The intensity of the ¹⁹⁹Hg satellite bands in the ³¹P n.m.r. spectrum indicates an Hg-P-Hg structural element and both arguments combine to suggest a (Hg-P)_n ring system. All n.m.r. spectra are consistent with those calculated for $[Hg_3(\mu_2-But_2P)_3L_3]$, the novel sixmembered ring (2); δ (³¹P) 102 and δ (¹¹⁹Hg) 1954 p.p.m. to high frequency of 85% H₃PO₄ or aqueous Hg(ClO₄)₂ (2 mmol HgO in 1 ml 60% HClO₄), respectively; ²J (³¹P-³¹P) 162, ¹J (³¹P-¹⁹⁹Hg) 2313, and ³J (³¹P-¹⁹⁹Hg) -9 Hz; spectra measured

in toluene for the isotopomer with one ¹⁹⁹Hg atom, $p_1 = 34.9\%$. A second equivalent of HPBu^t₂ does not co-ordinate or form Hg(PBu^t₂)₂ under the same conditions.

The reaction of (1) with HPCy₂ (Cy = cyclohexyl) yields, first the analogous product [Hg₃(μ_2 -Cy₂P)₃L₃], (3) [δ (³¹P) 50 and δ (¹¹⁹Hg) 2148 p.p.m.; ²J (³¹P-³¹P) 178, ¹J (³¹P-¹⁹⁹Hg) 2352, and ³J (³¹P-¹⁹⁹Hg) 2 Hz; in tetrahydrofuran (THF)]. This ring system rearranges to give another product (4) whose n.m.r. spectra (Figures 1 and 2) are compatible with the novel monocyclic eight-membered Hg-P ring system [Hg₄(μ_2 -Cy₂P)₄-L₄], (4) [δ (³¹P) 45 and δ (¹¹⁹Hg) 2062 p.p.m.; ²J (³¹P-³¹P) 138, ⁴J (³¹P-³¹P) ca. 0, ¹J (³¹P-¹⁹⁹Hg) 2562, and ³J (³¹P-¹⁹⁹Hg) 18 Hz; in THF, isotopomer with one ¹⁹⁹Hg atom, $p_1 = 38.7\%$]. Reaction of (1) with HPPh₂ yields the eight-membered ring compound [Hg₄(μ_2 -Ph₂P)₄L₄] (5) exclusively [δ (³¹P) 28 p.p.m.; ²J (³¹P-³¹P) 157, ⁴J (³¹P-³¹P) ca. 0, ¹J (³¹P-¹⁹⁹Hg) 2903, and ³J (³¹P-¹⁹⁹Hg) 9 Hz; toluene]. Solutions of (3)-(5) are quite stable below 253 K in contrast with the respective symmetric compounds Hg(PPh₂)₂ and Hg(PCy₂)₂.³

We thank the Fonds zur Förderung der Wissenschaft, Vienna, for making available the n.m.r. spectrometer.

Received, 13th October 1981; Com. 1208

References

- C. A. McAuliffe and W. Levason, 'Phosphine, Arsine and Stibine Complexes of the Transition Elements,' Elsevier, Amsterdam, 1979; B. Walther and S. Bauer, J. Organomet. Chem., 1977, 142, 177; W. W. du Mont and H. J. Kroth, Angew. Chem., 1977, 89, 832; J. B. Brandon and K. R. Dixon, Can. J. Chem., 1981, 59, 1188; C. Eaborn, K. J. Odell, and A. Pidcock, J. Organomet. Chem., 1979, 170, 105; S. J. Cartwright, K. R. Dixon, and A. D. Rattray, Inorg. Chem., 1980, 19, 1120; H. Schäfer, Z. Anorg. Allg. Chem., 1979, 459, 157; R. C. Dobbie and D. Whittaker, J. Chem. Soc., Dalton. Trans., 1973, 2427.
- 2 R. K. Harris, Can. J. Chem., 1964, 42, 2275.
- 3 M. Baudler and A. Zarkadas, Chem. Ber., 1972, 105, 3844.