Dimerisation of a Diplatinum to a Tetraplatinum Complex during Catalysis of the Water Gas Shift Reaction : **the X-Ray Crystal Structure** \textbf{of} $[\textbf{Pt}_4(\mu_2\textbf{-CO})_2(\mu_2\textbf{-Ph}_2\textbf{PCH}_2\textbf{PPh}_2)_{3}(\textbf{Ph}_2\textbf{PCH}_2\textbf{P(CH}_2\textbf{P(C1D)Ph}_2)]$

Aileen A. Frew,^b Ross H. Hill,^a Ljubica Manojlović-Muir,*b Kenneth W. Muir,^b and **Richard J. Puddephatt*a**

^a*Department of Chemistry, The University of Western Ontario, London, Canada N6A 5B7* b *Department of Chemistry, The University of Glasgow, Glasgow G72* 8QQ, *Great Britain*

The binuclear complex $[Pt_2H_2(\mu-H)(\mu-dppm)_2][PF_6]$, dppm = $Ph_2PCH_2PPh_2$, is an active catalyst precursor for the water gas shift reaction, especially at low pressures of carbon monoxide; the catalytic solutions are shown to contain cluster complexes such as the tetranuclear $[Pt_4(\mu\text{-CO})_2(\mu\text{-dppm})_3[Ph_2PCH_2P(:O)Ph_2]\}$, whose 'butterfly' structure has been determined by X-ray crystallography.

 $(\mu_2-H)(\mu_2\text{-}dppm)_2$ ⁺, (1) $(dppm = Ph_2PCH_2PPh_2)$ and of was first order with respect to catalyst concentration and the cationic transition metal carbonyls suggested a catalytic cycle turnover rate was 3.0 ± 0.2 [mol H₂ or CO₂] [mol (1)]⁻¹ h⁻¹.
for the water gas shift reaction (Scheme 1).^{1,2} Complex (1), However, at lower press as the $[PF_6]$ ⁻ or $[BPh_4]$ ⁻ salt, is indeed a catalyst precursor for the water gas shift reaction, but the mechanism is more complex than predicted.

Typical reactions were carried out at 100 °C in a Parr pressure reactor (300 ml) in solvent methanol–water $(2:1 \text{ y/v})$.

Known chemistry of the binuclear platinum hydride $[Pt_2H_2-$ With $p(CO)$ 110 lb in⁻²,[†] the rate of formation of H₂ or CO₂ However, at lower pressures of CO the turnover rate was

[†] This is the pressure to which the apparatus was charged at room temperature.

Figure 1. Dependence of turnover rate on the pressure of carbon monoxide, *p(C0).* In each case the catalyst precursor, **(l),** as the PF_6^- salt, (0.03 g), was dissolved in the solvent mixture (75 ml), see text.

considerably *higher,* as shown in Figure 1, and the system is one of the most active yet known under such mild conditions. \ddagger

A detailed explanation of the dependence of the rate of catalysis on $p(CO)$ is not yet possible, but it appears to be based on the nature of species present in the catalytic solutions. At low $p(CO)$ evaporation of catalytic solutions gives a complex showing terminal carbonyl bands in the i.r. spectrum **[v(CO)** 2060 and 2030 cm-l] close to values for **(2),** Scheme 1, $[v(CO)$ 2040 cm⁻¹] as well as a complex with $v(CO)$ 1750 cm⁻¹. At higher *p(C0)* this latter crystalline yellow complex, **(3),** is the major product and is identified as a neutral platinum cluster. The ³¹P n.m.r. spectrum shows that it is symmetrical, giving only a single ${}^{31}P$ resonance, with very complex satellites § due to coupling to ^{195}Pt , and the mass spectrum shows fragments containing four platinum atoms. Suitable crystals for X -ray studies have not yet been grown but we find that, when

Figure 2. Molecular structure of $[Pt_4(\mu_2\text{-}CO)_2(\mu_2\text{-}Ph_2PCH_2PPh_2)_3\text{-}$
 ${Ph_2PCH_2P}$ (: O)Ph₂}]. Hydrogens and five carbon atoms of each phenyl group are omitted for clarity. Selected interatomic distances are: Pt(1)-Pt(2) 2.739(1), Pt(2)-Pt(4) 2.61 1(2), Pt(4)-Pt(3) 2.617(2), Pt(3)-Pt(2) 2.700(1), Pt(3)-Pt(l) 2.708(2), Pt(1) . . . Pt(4) 3.074(1), Pt-P 2.241(8)-2.337(8), Pt-C 1.99(3)-2.17(3) A.

the catalysis is carried out in the presence of air, a neutral red cluster is formed which has $v(CO)$ 1735 and 1835 cm⁻¹ and which crystallizes from the reaction medium. This compound has a complex ³¹P n.m.r. spectrum, but we have identified it by X-ray diffraction as $[Pt_4(\mu_2\text{-}CO)_2(\mu_2\text{-}dppm)_3\text{/}Ph_2\text{-}$ $PCH₂P($ **:O**) $Ph₂$ }], **(4)**, and its stoicheiometry can thus be understood in terms of formation from **(2)** according to equation (1).

$$
2(2) + 1/2 O_2 \rightarrow 2H^+ + (4)
$$
 (1)

Crystals of **(4)** are orthorhombic, space group *Pcab,* $U = 18\,636\,\text{\AA}^3$, $Z = 8$, $D_c = 1.704\,\text{g cm}^{-3}$. The structure was solved, and refined to $R = 0.069$, \overline{I} on the basis of 8601 diffractometric intensities with $I \geq 3\sigma(I)$, which were collected with Mo- K_{α} radiation ($\lambda = 0.71069$ Å) and corrected for absorption effects $[\mu(\text{Mo-}K_{\alpha}) = 59.1 \text{ cm}^{-1}]$. $M = 2390$, $a = 20.898(3)$, $b = 28.590(4)$, $c = 31.192(5)$ Å,

In the molecular structure of **(4)** (Figure 2) the metal atoms display a highly distorted tetrahedral arrangement. Five edges **of** this tetrahedron are spanned by bridging carbonyl and dppm ligands, and the co-ordination sphere of the Pt(1) atom is completed by a phosphorus donor atom of the monodentate $Ph_2PCH_2P($: O)Ph₂ ligand. The Pt-Pt distances along the bridged edges of the tetrahedron [2.611(2)—2.739(1) Å] are comparable with metal-metal bond lengths $[2.669(1)$ -2.804(1) Å] reported for the platinum(0) clusters $[Pt_4(\mu_2\text{-CO})_5$ - $(PPhMe₂)₄$ ³ and $[Pt₅(CO)(\mu₂-CO)₅(PPh₃)₄$ ⁴ The Pt(1)-Pt(4) separation $[3.074(1)$ Å] is considerably longer, and the di-

 \ddagger For comparison, [Pt(PEt_{s)s}] gives a corresponding turnover rate of 0.5 h⁻¹ at 100 °C and 20 atm CO, RhCl_s-I⁻ gives a rate of 1 turnover h⁻¹ at 100 °C and 1 atm CO in aqueous acetic acid, 1 turnover h⁻¹ at 100 °C and 1 atm CO in aqueous acetic acid, and Fe(CO)₅-NaOH gives 0.6 turnover h⁻¹ at 137 °C and 28 atm CO: T. Yoshida, Y. Ueda, and S. Otsuka, *J. Am. Chem. Soc.*, 1978, 100, 3941; E. C. Baker, D. E. Hendriksen, and R. Eisenberg, *J. Am. Chem. Soc.*, 1980, 102, 1020; A. D. King, R. B. King, and D. B. Yang, *J. Am. Chem. Soc*

[§] These satellites are more complex than in binuclear Pt₂(μ -dppm)₂ complexes or in some simpler clusters of platinum: A. Moore, P. **S.** Pregosin, and L. M. Venanzi, *Inorg. Chim. Acta,* 1981, **48,** 153.

*⁷*The atomic co-ordinates for this structure are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied **by** the full literature citation for this communication.

hedral angle (83.7°) between the Pt(1), Pt(2), Pt(3) and Pt(2), $Pt(3)$, $Pt(4)$ planes is substantially greater, than the value expected for a regular tetrahedron (70.5"). Similar distortions have been observed in the $[Pt_4(\mu_2\text{-}CO)_5(PPhMe_2)_4]^3$ and $[Pt_2Co_2(CO)_5(\mu_2-CO)_3(PPh_3)_2]^5$ complexes which have been formulated as 'butterfly' clusters and where Pt-Pt separations **of** 3.543(9) and 2.987(4) A, respectively, are considered as non-bonding distances. The assumption that the Pt(1) and Pt(4) atoms are not directly bonded to each other leads to a 16-electron configuration for the $Pt(1)$ and $Pt(4)$ atoms, an 18-electron closed shell for Pt(2) and Pt(3) and to a 'butterfly', rather than tetrahedral, formalism for the tetraplatinum cluster in **(4).**

It is significant that the most common platinum(0) clusters are based on triangular Pt_3 units, $3,4,6-8$ and that the present Pt_4 unit is formed by dimerisation of a Pt_2 complex, albeit with extensive rearrangement of the μ_2 -dppm ligands.

We thank the University of Glasgow for a studentship to

A. A. F., N.S.E.R.C. for financial support to **R. J.** P. and Johnson-Matthey for the generous loan of platinum.

Received, 16th November I981 ; *Corn. 1340*

References

- 1 M. **P.** Brown, J. R. Fisher, **A.** J. Mills, R. J. Puddephatt, and M. A. Thomson, *Inorg. Chim. Acta,* 1980, **44,** L271.
- 2 H. C. Clark and W. **J.** Jacobs, *Inorg. Chem.,* 1970, 9, 1229.
- 3 R. G. Vranka, L. **F.** Dahl, **P.** Chini, and **J.** Chatt, *J. Am. Chem. Soc.,* 1969, 91, 1574.
- 4 J. P. Barbier, R. Bender, **P.** Braunstein, J. Fischer, and L. Ricard. J. *Chem. Res. (S),* 1978, 230; (M), 1978, 2913.
- 5 J. Fisher, A. Mitschler, R. Weiss, J. Dehand, and **J. F.** Nennig, J. *Ovganomet. Chem.,* 1975, 91, **C37.**
- *6* J. Chatt and P. Chini, *J. Chem. SOC. A,* 1970, 1538.
- 7 A. Albinati, G. Carturan, and **A.** MUSCO, *Inorg. Chim. Acta,* 1976, 16, L3.
- **8** D. *C.* Moody and R. R. Ryan, Inorg. *Chem.,* 1977,16, 1052.