Biosynthesis of the Aflatoxin Precursor Sterigmatocystin by *Aspergihs versico/or;* **Spin-echo Resolution of '*O Isotope Shifts in 13C-N.M.R. Spectroscopy**

Thomas T. Nakashima and John C. Vederas"

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Locations of oxygen-18 label in an aflatoxin precursor, sterigmatocystin, derived from sodium $[1 - 13C, 18O_2]$ -
acetate were determined using a spin-echo pulse sequence $[90°$ - τ -180°- τ -acquisition, where $\tau = 1/(2 J_{$ in ¹³C-n.m.r. spectroscopy to resolve isotope shifts from interfering carbon-carbon couplings (J_{C-C}).

Sterigmatocystin **(1)** is a toxic hepatocarcinogen produced by *Aspergillus* and other fungi which can contaminate food and pose a serious health hazard.¹⁻³ It also acts as a biosynthetic precursor to the even more potent aflatoxin B, **(4),** although recent pulse labelling studies suggest that **(1)** may be an intermediate in only one of two possible pathways.⁴ Cooccurrence of **(1)** with small amounts of 5,6-dimethoxysterigmatocystin in *Aspergillus multicolor* may be biogenetically significant in this regard.⁵ Extensive carbon-13 labelling work has established the arrangement of acetate-derived carbons in sterigmatocystin **(I)*** and its ostensible precursors, averufin *(2)'* and versicolorin **A (3)8** (Scheme 1). Since detection of oxygen-18 by upfield isotope shifts induced in 13 C n.m.r. spectra^{9,10} has opened a new avenue for exploration of biosynthetic mechanism,11-16 these earlier studies make sterigmatocystin **(1)** a prime candidate for oxygen-labelling experiments. Interestingly, a frequent problem is excessive incorporation of **[13C,180]** precursor which leads to multiple **13C** labels within a particular molecule, thereby causing long range carbon-carbon couplings which obscure the small ^{18}O isotope shifts.^{15,16} In the present work we apply a spin-echo sequence in 13C-n.m.r. spectroscopy to overcome this difficulty and determine the 180-labelling pattern in sterigmatocystin (1) derived from [1-¹³C,¹⁸O₂]acetate.

In the incorporation experiment ten standing cultures of *Aspergillus versicolor* NRRL **5219 (100** ml low salt medium1'/ **500** ml flask) were grown in the dark at 29 *"C* for **120** h prior to the first administration of precursor. An aqueous solution (pH 10) of doubly labelled sodium $[1^{-13}C_1^{18}O_2]$ acetate¹⁵ (isotopic purity 90% ¹³C, 18% ¹⁸O₁, 81% ¹⁸O₂) was injected below the surface of each culture (50 mg/injection) every 24 h until five injections had been made. After an additional three days, pure [180,13C]sterigmatocystin (79 mg) was isolated by literature procedures.¹⁷

Examination of the normal proton-decoupled 100.6 MHz 13C-n.m.r. spectrum of **(1)** showed that the signals were complex patterns of long range couplings arising from multiple intramolecular precursor incorporation. However spin-echo

Scheme 1

Fourier Transform^{18,19} (SEFT) ¹³C-n.m.r. allowed separation of the uncoupled ¹³C⁻¹⁶O and ¹³C⁻¹⁸O singlets from signals (doublets) coupled to nearby **13C** atoms. The necessary pulse sequence is $(90^\circ-\tau-180^\circ-\tau-$ -aquisition-T)_N where τ is set to $1/(2 J_{\rm cc})$, T is the delay between acquisition and the next pulse sequence, and *N* is the number of accumulations. With this sequence the coupled resonances (doublets) are phasemodulated as a function of J_{cc} (the long range coupling constant) such that they are inverted relative to the normal ¹³C-n.m.r. spectrum at $\tau = 0$, 90° out of phase at $\tau = 1/(4 J_{\text{cc}})$, and in phase (positive) at $\tau = 1/(2 J_{\text{cc}})$. Regardless of what τ value is employed, the uncoupled singlets always remain inverted.

This technique resolved even the smallest expected isotope shift^{9,10} at C-3 and sharpened resonances for carbons with no isotopically shifted peaks (such as *C-7)* to single lines (Figure 1). The presence of $[{}^{18}O]$ acetate-derived oxygens could be detected in sterigmatocystin **(1)** at **C-1,** C-3, C-8, and **C-10** (Table 1). Except for C-3, all of the carbons showing isotope shifts gave base line resolution of the **13C-160** and **13C-180** inverted peaks in the spin-echo experiments. Improved signal to noise ratio and resolution may be partly due to necessary changes in acquisition parameters and partial suppression of broad resonances with T_2 values shorter than the τ value used. Although quantitative estimates of isotope ratios (Table 1) must be viewed with extreme caution because the exact influence of **SEFT** on signal intensities is uncertain, the technique does permit the qualitative identification of ¹⁸O attached to carbon. Our results support a proposed^{1,4,6} biosynthetic scheme $[(2) \rightarrow (3) \rightarrow (1)]$ in light of previous work on the source of oxygens in averufin (2) ,¹¹ although the absence of an oxygen substituent at **C-5** of **(1)** remains puzzling.

Figure 1. ¹H-Decoupled 100.6 MHz ¹³C-n.m.r. spectra expansions (0.05 p.p.m./division) of C-3 and **C-7** of sterigmatocystin **(1)** derived from sodium [l-13C,1802]acetate.

The nature of the intermediate between versicolorin A **(3)** and sterigmatocystin **(1)** is unknown, but the unscrambled carbon labelling pattern^{1,6} shows that xanthone ring closure occurs through an unsymmetrical species. Given the ease of xanthone formation by addition-elimination reactions,20 oxidative cleavage of **(3)** to an enzyme-bound hydroxylated

^a Proton noise decoupled spectra of *ca*. 0.1 **M** (1) in CDCl₃ on Bruker WH 400; signals were first expanded using 32 K data block/2000 Hz, 500—3500 scans, 16.4 s acquisition, 45° pulse
angle; subsequent spin-echo expansions employ 6.5 s acquisition,
 $\tau = ca$, 0.07 s. ^{b 18}O Upfield isotope shifts are \pm 0.1 (p.p.m. ×
100). ^e Ratio of ¹⁸O t 18° O inverted signals in the spin-echo experiment; the relative intensities are $\pm 5\%$ of estimates from normal spectra.

Scheme 2. Possible modes of xanthone ring formation.

benzophenone (Scheme *2)* seems likely. In principle the ring closure can proceed in two ways; either an acetate-derived oxygen (*) adds in Michael fashion to eliminate an oxygen (\blacklozenge) derived from the atmosphere (or medium) as water (path **A)** or *vice versa* (path **B).** Doubly labelled [13C,180]-precursors allow detection of intact carbon-oxygen bonds because of the low probability of an adjacent carbon being 13C in a particular product molecule. Hence the appearance of an isotope shift at C-8 of **(1)** (but not at C-7) shows that the hydroxy-group in ring **A** of versicolorin **A (3)** (or a closely related intermediate) becomes the xanthone ring oxygen of sterigmatocystin **(l),** thereby supporting path A in Scheme 2.

We thank Dr. D. T. Wicklow (Northern Regional Research Laboratory, **U.S.** Department of Agriculture) for gifts of *A. versicolor,* and Prof. D. L. Rabenstein (University of Alberta) for valuable discussion on spin-echo n.m.r. spectroscopy. Financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

Received, 26th October 1981; Corn. 1248

References

- 1 **P. S.** Steyn, R. Vleggaar, and P. L. Wessels in 'The Biosynthesis of Mycotoxins,' ed. P. **S.** Steyn, Academic Press, New York, 1980, pp. 105-155, and references therein.
- 2 **J.** M. Essigmann, L. **J.** Barker, K. **W.** Fowler, **M.** A. Francisco, **V.** N. Reinhold, and *G.* N. Wogan, *Proc. Natl. Acad. Sci. USA,* 1979, **76,** 1979.
- **3 J.** D. Hendricks, R. 0. Sinnhuber, **J.** H. Wales, M. E. Stack, and D. P. H. Hsieh, *J. Natl. Cancer Inst. USA,* 1980, **64,** 1503.
- ⁴**L.** 0. Zamir and K. D. Hufford, *Appl. Environ. Microbiol.,* 1981, **42,** 168.
- *⁵*T. Hamasaki, T. Nakagomi, Y. Hatsuda, K. Fukuyama, and Y. Katsube, *Agric. Biol. Chem.,* 1980, **44,** 1149.
- 6 K. G. R. Pachler, P. **S.** Steyn, R. Vleggaar, P. L. Wessels, and D. B. Scott, *J. Chem. SOC., Perkin Trans.* 1, 1976, 1182.
- **7** C. P. Gorst-Allman, K. **G.** R. Pachler, P. **S.** Steyn, P. **L.** Wessels, andD. B. Scott, *J. Chem. SOC., Perkin Trans* 1, 1977, 2181.
- **8** C. P. Gorst-Allman, P. **S.** Steyn, P. L. Wessels, and D. B. Scott, *J. Chem. SOC., Perkin Trans.* 1, 1978, 961.
- **9** R. N. Moore, **J.** Diakur, T. T. Nakashima, **S.** L. McLaren, and **J.** C. Vederas, *J. Chem. SOC., Chem. Cornmun.,* 1981, 501.
- 10 **J.** M. Risley and R. L. Van Etten, *J. Am. Chem. SOC.,* 1981, **103,** 4389.
- 11 **J.** C. Vederas and T. T. Nakashima, *J. Chem. Soc., Chem. Commun.,* 1980, 183.
- 12 J. *C.* Vederas, T. T. Nakashima, and J. Diakur, *Planta Med.,* 1980, **39,** 201.
- **13 U.** Sankawa, Y. Ebizuka, H. Noguchi, Y. Ishikawa, **S.** Kitagawa, T. Kobayashi, and H. Seto, *Heterocycles,* 1981, **16,** 1115.
- 14 C. R. Hutchinson, M. M. Sherman, **J.** C. Vederas, and T. T. Nakashima, *J. Am. Chem. Soc.,* 1981, **103,** 5953.
- 15 D. E. Cane, T. C. Liang, and H. Hasler, *J. Am. Chem. SOC.,* 1981, **103,** 5962.
- 16 D. **E.** Cane, **H.** Hasler, and T. C. Liang, *J. Am. Chem. SOC.,* 1981, **103,** 5960.
- 17 D. P. H. Hsieh and **S.** L. Yang, *Appl. Microbiol.,* 1975,29, 17.
- 18 D. L. Rabenstein and T. T. Nakashima, *Anal. Chem.,* 1979, **51,** 1465A, and references therein.
- 19 D. W. Brown, T. T. Nakashima, and D. L. Rabenstein, *J. Magn. Reson.,* 1981, **45,** 302.
- 20 R. M. Sandifer, **A.** K. Bhattacharya, and T. M. Harris, *J. Org. Chem.,* 1981, **46,** 2260.