The Contribution of Ring Strain to Nucleofugality : **the First Measurement**

Gwerydd Griffiths, Simon Hughes, and Charles J. M. Stirling"

School of Physical and Molecular Sciences, University College of North Wales, Bangor LL57 2UW, U.K.

Comparison of eliminative ring fission in a cyclopropane and elimination in an acyclic analogue allows determination of acceleration of elimination by ring strain; a factor of at least **1 O1** *.7* has been found, the largest for any heterolytic reaction.

Acceleration of reactions of cyclopropanes by ring strain is a familiar but unquantified phenomenon. Cyclopropanes thus show reactions, especially nucleophilic displacement of carbon leaving groups, not seen in acyclic analogues.¹ Recently, the nucleofugality² of a carbon leaving group in an elimination reaction has been determined³ and, as cyclopropanes readily undergo eliminative ring fission, 4 we examined the possibility of determining the nucleofugality of a carbon leaving group whose bond connection is strained by inclusion in a cyclopropane. We now report the first quantitative data on the effect of ring strain on nucleofugality. It is also the largest quantified effect of strain in any heterolytic reaction.

The cyclopropyl sulphone **(2)** (Scheme l), obtained using known routes⁵ from the hydroxymethylcyclopropane (1), which was itself obtained using known routes,⁵ reacted with ethanolic sodium ethoxide to give the diene *(5),* and subsequently the bis-addition product **(6).** It was established that the intermediate bis-sulphones **(3)** and **(4)** gave the diene *(5)* at least **lo3** times faster than *(2).* The primary kinetic deuterium isotope effect $[(k_{\rm H}/k_{\rm p})_0] = 0.97$ (Table 1) shows that deprotonation is not involved in the rate-determining step of eliminative ring fission and this is confirmed by the rate of β -detritiation which is much faster than elimination. These results demonstrate that the mechanism of ring fission **is** $(E1cB)$ _R and the rank⁶ (=nucleofugality = $k_{obs} - k_{deprotonation}$ + **11)** of the strained carbon leaving group is thus directly obtainable.

Comparison of the reactivity of **(2)** with that of an unstrained analogue presented difficulty because of the very low ranks of unstrained carbon leaving groups.^{2,7} In the system $(7; Z =$ Me or **H),** no elimination of a sulphonyl-stabilised carbanion can be observed and with $Z = SO₂Et$, elimination of the benzenesulphinate ion occurs more rapidly than elimination of the bis-stabilised carbanion $(8; R = Me)$. In the bis-activated system **(9)** elimination of the anion **(8;** $R = Me$ **)** occurs but the reaction is reversible and the reverse reaction is suppressed by addition of the anion $(8; R = H)$. The bis-activated system is calibrated against the mono-activated system *via* the 2-nitropropyl leaving group (Table 1). The *rank* of this leaving group is assigned the same value in the bis-activated system as in the mono-activated one. Earlier work has shown that rank is insensitive to activating group.³

The results show that, even making no allowance for the comparison of a mono-stabilised leaving group in the cyclopropane system with a bis-stabilised group in the acyclic (unstrained) system, the rank difference of the leaving groups in the strained and unstrained systems is 11.7. This corresponds to a $\Delta\Delta G^{\dagger}$ value of about 70 kJ mol⁻¹ or about 60% of the strain energy of the cyclopropane ring.

Ruchardt and Beckhaus⁹ have recently shown that in homolysis of strained acyclic and cyclic alkanes, about 60%

Table 1

^a Units: 1 mol^{-1} s⁻¹ at 25 °C in EtONa-EtOH. **b** $\log k_{\text{obs}} - \log$ *k*deprotonation + 11. *k*deprotonation determined from *k*detritiation
and $k_H/k_T = 7.1$ (ref. 8). ^c (k_H/k_D) $\beta = 0.97$. ^d k_B^2 detritiation = 1.2 × 10⁻¹. ^e Rate measured by the rate of approach to equi-
librium (SO,Et),. **f** Assigned by comparison with the next entry. **g** Assigned from entry below.

Scheme 1. i, BuⁿLi-hexane-tetrahydrofuran; ii, epibromohydrin; iii, SOCl₂-pyridine, 0 °C; iv, PhSNa-EtOH; v, H₂O₂-MeOH-NH₄MoO₇; vi, EtONa–EtOH; vii, PhSH, hv.

of the *calculated* strain energy is released at the transition state.

The synthetic application of sulphonyl-activated eliminative ring fission of cyclobutenes has recently been reported;¹⁰ we are currently investigating the accelerative effect of strained ring fission of cyclobutanes.¹¹

We thank the **S.R.C.** for a maintenance grant (to *S.* H.) and equipment, U.C.N.W. for support, and Dr. **P. J.** Thomas for preliminary experiments.

Received, 22nd October 1981; Corn. 1240

References

1 **S.** Danishevsky and R. K. Singh, *J. Am. Chem. Soc.,* 1975, **97,** 3239 and references cited therein.

- 2 **C.** J. **M.** Stirling, *Acc. Chem. Res.,* 1979, **12,** 198.
- **3 P.** J. Thomas and C. **J.** M. Stirling, *J. Chem. SOC., Perkin Trans.* 2, 1978, 1130.
- **4** *C.* J. M. Stirling, *Chem. Rev.,* 1978, *78,* 517.
- *5* T. Durst and B. Corbel, *J. Org. Chem.,* 1976, **41,** 3649; *Y.* Gaoni, *Tetrahedron Lett.,* 1976, *503.*
- *6* D. R. Marshall, P. J. Thomas, and C. J. M. Stirling, *J. Chem. SOC., Perkin Trans.* 2, 1977, 1898.
- 7 M. Varmaand *C.* J. M. Stirling, *J. Chem. SOC., Chem. Commun.,* 1981, 553.
- 8 **P. J.** Thomas and *C.* J. **M.** Stirling, *J. Chem. Soc., Perkin Trans.* 2, 1977, 1909.
- 9 *C.* Ruchardt and H.-D. Beckhaus, *Angew Chem., Int. Ed. Engl.,* 1980, **19,** 429.
- 10 **T.** Kametani, M. Tsubuki, H. Nemoto, and **K.** Suzuki, *J. Am. Chem. Soc.,* 1981, **103,** 1256.
- 11 **H. A.** Earl and *C.* J. **M.** Stirling, to be published.