Active Sites for the Oxidation of Carbon Monoxide on V₂O₅ Catalysts

Kenji Mori, Akira Miyamoto," Toshiaki Ui, and Yuichi Murakami

Department of Synthetic Chemistry, Faculty of Engineering, Nag0 ya University, Chikusa-ku, Nagoya 464, Japan

Surface defects such as steps, kinks, or vacancies are active sites for the oxidation of CO on V_2O_5 catalysts; the activity of surface V=O species located in the smooth (010) face *is* much lower than that of the surface defects.

Surface $V=O$ species located in the (010) face of V_2O_5 have been considered to be active sites for various reactions including the oxidation of hydrocarbons and the reaction of NO with $NH₃$ in the presence of $O₂$.¹⁻³ Although much research has been done on the oxidation of *CO* on vanadium oxide catalysts, the active site for this reaction has been a subject of controversy. $2,4$ This is partly because the ^{18}O -tracer technique does not necessarily give decisive evidence, since the oxygen of $CO₂$ can readily exchange with the lattice oxygen of V_2O_5 ^{2,5} In this study, the structure sensitivity of this reaction and the relationship between the reaction rate and the amount of V=O species have been examined in order to solve this problem.

A V_2O_5 -FRESH catalyst was prepared by the thermal decomposition of ammonium metavanadate at 773 K in flowing O_2 . A V_2O_5 -FUSED catalyst was prepared by fusing the V_2O_5 -FRESH catalyst at 1073 K for 18 h in air, followed by gradual cooling to room temperature. A V_2O_5 -REDOX catalyst was prepared from the V_2O_5 -FUSED catalyst by reduction-oxidation treatment, *i.e.* reduction in flowing **Hs** at 673 K for 1 h followed by reoxidation in flowing O_2 (20%) at 673 K for 1 h (this redox cycle was repeated 5 times). The number of surface V=O species on the catalyst was determined using the rectangular pulse technique described previously.⁶ **XPS** spectra of the catalysts were measured on a Shimadzu ESCA 750 electron spectrometer. Kinetic studies were carried out using the flow technique with $T = 613-743$ K, $[CO] =$ 4.5%, and $[O_2] = 0$ —75.2%. I.r. spectra of the catalysts under steady state conditions at various concentrations of $O₂$ were measured on **JASCO** EDR-31 emissionless i.r. diffuse reflectance spectrometer using KBr as a diluent.⁷

Table 1. Rate and specific rate for the oxidation of CO on vanadium oxide catalysts.³

4.5 molyo; concentration of *Oz,* 75.2 molyo. Emmett-Teller. BET = Brunauer-This is defined as the number of surface **V=O** species divided by the BET surface area. Reaction condition: temperature, 673 **K;** concentration of CO,

Table 1 shows the rate and specific rate for the oxidation of CO when an excess of oxygen was present, where the rate of the reaction was zeroth order with respect to $[O_2]$, and where the catalyst was confirmed to be in its highest oxidation state, $i.e.$ V^{5+} . Here, the specific rate is defined as the rate of CO oxidation per unit surface area of the catalyst. The specific rate for the V_2O_5 -FUSED catalyst was ca. 20 times smaller than that for the V_2O_5 -FRESH catalyst (Table 1), indicating that the specific activity of the V_2O_5 -FRESH catalyst significantly decreased on fusion. The specific rate, however, for the V_2O_6 -REDOX catalyst was *ca*, twice as large as that for the V_2O_5 -FUSED catalyst. A similar relationship was also found to hold for the reaction at temperatures between 673 and 743 K.

Figure l(a) shows the rate of oxidation of *CO* and the amount of $V=O$ species in the catalyst at steady state at

Figure 1. Reaction rate and amount of **V=O** in the catalyst in the steady state CO oxidation at various concentrations of O_2 . (a) The V_2O_5 -FRESH catalyst. $T = 658$ K; [CO] = 4.5 mol%. (b) The V_2O_5 -FUSED catalyst. $T = 743$ K; [CO] = 4.5 mol%. The amount of **V=O** species in the catalyst was evaluated using the Kubelka-Munk equation from the absorption peak at 1020 cm^{-1} assignable to the **V**=O stretching vibration. \bigcirc = reaction rate, \bigcirc = amount of **V**=O.

various concentrations of O_2 . As shown, the rate increased linearly with increasing $[O_2]$ up to 20 mol%. Above this concentration, it was almost constant. The steady state amount of V=O species in the V_2O_5 -FRESH catalyst as measured by i.r. spectroscopy, on the other hand, did not change with $[O_2]$; in other words, the V_2O_5 catalyst was held in the highest oxidation state, V^{5+} , irrespective of $[O_2]$. Figure 1(b) shows the relationship for the V_2O_5 -FUSED catalyst. As may be seen, the amount of $V=O$ species and the reaction rate changed similarly with [O₂]. The reaction on the V_2O_5 -FUSED catalyst took place even after stoppage of the gaseous O_2 supply, indicating participation of the bulk V= O species in the oxidation of CO. However, reaction on the V_2O_5 -FRESH catalyst stopped almost immediately after the stoppage of gaseous O_2 supply. These data indicate that the $V=O$ species located in the smooth (010) face are active sites for the reaction on the V_2O_5 -FUSED catalyst, but not on the $V₂O₅$ -FRESH catalyst.

The specific activity of the V_2O_5 -FRESH catalyst is much higher than that of the V₂O₅-FUSED catalyst (Table 1). This strengthens the conclusion that the V $=$ O species located in

the smooth (010) face are not active sites for the oxidation on the V_2O_5 -FRESH catalyst. If they were, then the specific activity of the catalyst should be almost the same as that on the V_2O_5 -FUSED catalyst, because the density of surface V=O species on the V_2O_5 -FRESH catalyst is almost the same as that on the V_2O_5 -FUSED catalyst (Table 1). Fusion of a solid would generally lead to a smooth surface with a decreased number of surface defects while severe redox treatment of **a** solid with few surface defects would tend to increase their number. No impurity peaks were observed in the **XPS** spectrum of the V_2O_5 -FRESH, V_2O_5 -FUSED, or V_2O_5 -REDOX catalysts except for the C_{1s} peak at 284.6 eV. A significant decrease in the specific rate for the V_2O_5 -FRESH on fusing and a marked increase in the specific rate for the V_2O_5 -FUSED on the redox treatment therefore leads us to the conclusion that the active sites for the oxidation on the V_2O_5 -FRESH and V_2O_5 -REDOX catalysts are located at the surface defects *(e.g.* steps, kinks, or vacancies). In conclusion, the active sites for the oxidation of CO are oxygen species located at surface defects for the V_2O_5 -FRESH and V_2O_5 -REDOX catalysts, but they are the surface $V=O$ species located in the smooth (010) face for the V_2O_5 -FUSED catalyst; the activity of the former is significantly higher than that of the latter.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Japan. The authors thank Mr **T.** Iwana (Products R & D Center, Daikyo Oil Co. Ltd.) for the measurement of **XPS** spectra.

Received, 3rd November 1981 ; *Com. I289*

References

- 1 K. Tarama, **S.** Teranishi, **S.** Yoshida, and N. Tamura, Proc. 3rd Int. Congr. Catal., North-Holland Publishing Co., 1965, p. 282.
- 2 K. Hirota, *Y.* Kera, and **S.** Teratani, *J. Phys. Chem.,* 1968, **72,** 3133.
- 3 D. J. Cole, C. F. Cullis, and D. J. Hucknall, *J. Chem. SOC., Faraday Trans.* 1, 1976, 72, 2185; G. C. Bond, A. J. Sárkány, and **G.** D. Parfitt, *J. Catal.,* 1979, **57,** 176; M. Akimoto, M. Usami, and E. Echigiya, Bull. *Chem. SOC. Jpn.,* 1978, **51,** 2195; M. Inomata, **A.** Miyamoto, and Y. Murakami, *J. Chem. SOC., Chem. Commun.,* 1980, 233; *J. Catal.,* 1980, *62,* 140.
- **4** M. Ya. Kon', V. **A.** Shvets, and **V.** *G.* Kazanskii, *Kinet. Katal.,* 1972, **13,** 735; M. R. Goldwasser and D. L. Trimm, *Ind. Eng. Chem., Prod. Res. Dev.,* 1979, **18,** 27; F. Roozeboom, A. J. van Dillen, J. **W.** Geus, and **P.** J. Gellings, *ibid.,* 1981, **20,** 304.
- 5 Y. Kera, *Bull. Chem. SOC. Jpn.,* 1977, **50,** 2841; H. Kakioka, **V.** Ducarme, and *S. 5.* Teichner, *J. Chim. Phys. Phys. Chim. Biol.,* 1971, *68,* 1715, 1722, 1726.
- **6 A.** Miyamoto, *Y.* Yamazaki, M. Inomata, and Y. Murakami, *J. Phys. Chem.,* 1981, **85,** 2366; M. Inomata, A. Miyamoto, and Y. Murakami, *ibid.,* **p.** 2372. 7 M. Niwa, T. Hattori, M. Takahashi, **K.** Shirai, M. Watanabe,
- and Y. Murakami, *Anal. Chem.,* 1979, **51,** 46.