Active Sites for the Oxidation of Carbon Monoxide on V₂O₅ Catalysts

Kenji Mori, Akira Miyamoto,* Toshiaki Ui, and Yuichi Murakami

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan

Surface defects such as steps, kinks, or vacancies are active sites for the oxidation of CO on V_2O_5 catalysts; the activity of surface V=O species located in the smooth (010) face is much lower than that of the surface defects.

Surface V=O species located in the (010) face of V_2O_5 have been considered to be active sites for various reactions including the oxidation of hydrocarbons and the reaction of NO with NH₃ in the presence of O_2 .¹⁻³ Although much research has been done on the oxidation of CO on vanadium oxide catalysts, the active site for this reaction has been a subject of controversy.^{2,4} This is partly because the ¹⁸O-tracer technique does not necessarily give decisive evidence, since the oxygen of CO₂ can readily exchange with the lattice oxygen of V₂O₅.^{2,5} In this study, the structure sensitivity of this reaction and the relationship between the reaction rate and the amount of V=O species have been examined in order to solve this problem.

A V_2O_5 -FRESH catalyst was prepared by the thermal decomposition of ammonium metavanadate at 773 K in flowing O₂. A V₂O₅-FUSED catalyst was prepared by fusing the V₂O₅-FRESH catalyst at 1073 K for 18 h in air, followed by gradual cooling to room temperature. A V₂O₅-REDOX catalyst was prepared from the V₂O₅-FUSED catalyst by reduction-oxidation treatment, i.e. reduction in flowing H_s at 673 K for 1 h followed by reoxidation in flowing O_2 (20%) at 673 K for 1 h (this redox cycle was repeated 5 times). The number of surface V=O species on the catalyst was determined using the rectangular pulse technique described previously.⁶ XPS spectra of the catalysts were measured on a Shimadzu ESCA 750 electron spectrometer. Kinetic studies were carried out using the flow technique with T = 613-743 K, [CO] = 4.5%, and $[O_2] = 0$ —75.2%. I.r. spectra of the catalysts under steady state conditions at various concentrations of O₂ were measured on JASCO EDR-31 emissionless i.r. diffuse reflectance spectrometer using KBr as a diluent.7

Table 1. Rate and specific rate for the oxidation of CO on vanadium oxide catalysts.^a

Catalyst	BET ^b surface area/m ² g ⁻¹	Density of surface V=O ^c / µmol m ⁻²	Rate/ µmol g ⁻¹ s ⁻¹	Specific rate/µmol m ⁻² s ⁻¹
V ₂ O ₅ -FRESH	5.4	4.1	9.65	1.79
V ₂ O ₅ -FUSED	0.8	5.0	0.06	0.08
V ₂ O ₅ -REDOX	0.8	5.0	0.11	0.14
			a	

^a Reaction condition: temperature, 673 K; concentration of CO, 4.5 mol%; concentration of O_2 , 75.2 mol%. ^b BET = Brunauer-Emmett-Teller. ^c This is defined as the number of surface V=O species divided by the BET surface area.

Table 1 shows the rate and specific rate for the oxidation of CO when an excess of oxygen was present, where the rate of the reaction was zeroth order with respect to $[O_2]$, and where the catalyst was confirmed to be in its highest oxidation state, *i.e.* V⁵⁺. Here, the specific rate is defined as the rate of CO oxidation per unit surface area of the catalyst. The specific rate for the V₂O₅-FUSED catalyst was *ca.* 20 times smaller than that for the V₂O₅-FRESH catalyst (Table 1), indicating that the specific activity of the V₂O₅-FRESH catalyst significantly decreased on fusion. The specific rate, however, for the V₂O₅-FUSED catalyst. A similar relationship was also found to hold for the reaction at temperatures between 673 and 743 K.

Figure 1(a) shows the rate of oxidation of CO and the amount of V=O species in the catalyst at steady state at

Figure 1. Reaction rate and amount of V=O in the catalyst in the steady state CO oxidation at various concentrations of O_2 . (a) The V_2O_5 -FRESH catalyst. T = 658 K; [CO] = 4.5 mol%. (b) The V_2O_5 -FUSED catalyst. T = 743 K; [CO] = 4.5 mol%. The amount of V=O species in the catalyst was evaluated using the Kubelka-Munk equation from the absorption peak at 1020 cm⁻¹ assignable to the V=O stretching vibration. \bigcirc = reaction rate, \bigcirc = amount of V=O.

various concentrations of O2. As shown, the rate increased linearly with increasing $[O_2]$ up to 20 mol%. Above this concentration, it was almost constant. The steady state amount of V=O species in the V2O5-FRESH catalyst as measured by i.r. spectroscopy, on the other hand, did not change with $[O_2]$; in other words, the V_2O_5 catalyst was held in the highest oxidation state, V^{5+} , irrespective of $[O_2]$. Figure 1(b) shows the relationship for the V_2O_5 -FUSED catalyst. As may be seen, the amount of V=O species and the reaction rate changed similarly with $[O_2]$. The reaction on the V₂O₅-FUSED catalyst took place even after stoppage of the gaseous O₂ supply, indicating participation of the bulk V=O species in the oxidation of CO. However, reaction on the V₂O₅-FRESH catalyst stopped almost immediately after the stoppage of gaseous O2 supply. These data indicate that the V=O species located in the smooth (010) face are active sites for the reaction on the V_2O_5 -FUSED catalyst, but not on the V₂O₅-FRESH catalyst.

The specific activity of the V_2O_5 -FRESH catalyst is much higher than that of the V_2O_5 -FUSED catalyst (Table 1). This strengthens the conclusion that the V=O species located in

the smooth (010) face are not active sites for the oxidation on the V₂O₅-FRESH catalyst. If they were, then the specific activity of the catalyst should be almost the same as that on the V_2O_5 -FUSED catalyst, because the density of surface V=O species on the V_2O_5 -FRESH catalyst is almost the same as that on the V_2O_5 -FUSED catalyst (Table 1). Fusion of a solid would generally lead to a smooth surface with a decreased number of surface defects while severe redox treatment of a solid with few surface defects would tend to increase their number. No impurity peaks were observed in the XPS spectrum of the V₂O₅-FRESH, V₂O₅-FUSED, or V₂O₅-REDOX catalysts except for the C_{1s} peak at 284.6 eV. A significant decrease in the specific rate for the V₂O₅-FRESH on fusing and a marked increase in the specific rate for the V_2O_5 -FUSED on the redox treatment therefore leads us to the conclusion that the active sites for the oxidation on the V₂O₅-FRESH and V₂O₅-REDOX catalysts are located at the surface defects (e.g. steps, kinks, or vacancies). In conclusion, the active sites for the oxidation of CO are oxygen species located at surface defects for the V_2O_5 -FRESH and V_2O_5 -REDOX catalysts, but they are the surface V=O species located in the smooth (010) face for the V_2O_5 -FUSED catalyst; the activity of the former is significantly higher than that of the latter.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Japan. The authors thank Mr T. Iwana (Products R & D Center, Daikyo Oil Co. Ltd.) for the measurement of XPS spectra.

Received, 3rd November 1981; Com. 1289

References

- K. Tarama, S. Teranishi, S. Yoshida, and N. Tamura, Proc. 3rd Int. Congr. Catal., North-Holland Publishing Co., 1965, p. 282.
- 2 K. Hirota, Y. Kera, and S. Teratani, J. Phys. Chem., 1968, 72, 3133.
- 3 D. J. Cole, C. F. Cullis, and D. J. Hucknall, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 2185; G. C. Bond, A. J. Sárkány, and G. D. Parfitt, J. Catal., 1979, 57, 176; M. Akimoto, M. Usami, and E. Echigiya, Bull. Chem. Soc. Jpn., 1978, 51, 2195; M. Inomata, A. Miyamoto, and Y. Murakami, J. Chem. Soc., Chem. Commun., 1980, 233; J. Catal., 1980, 62, 140.
- 4 M. Ya. Kon', V. A. Shvets, and V. G. Kazanskii, *Kinet. Katal.*, 1972, **13**, 735; M. R. Goldwasser and D. L. Trimm, *Ind. Eng. Chem., Prod. Res. Dev.*, 1979, **18**, 27; F. Roozeboom, A. J. van Dillen, J. W. Geus, and P. J. Gellings, *ibid.*, 1981, **20**, 304.
- 5 Y. Kera, Bull. Chem. Soc. Jpn., 1977, 50, 2841; H. Kakioka,
 V. Ducarme, and S. J. Teichner, J. Chim. Phys. Phys. Chim. Biol., 1971, 68, 1715, 1722, 1726.
- 6 A. Miyamoto, Y. Yamazaki, M. Inomata, and Y. Murakami, J. Phys. Chem., 1981, 85, 2366; M. Inomata, A. Miyamoto, and Y. Murakami, *ibid.*, p. 2372.
 7 M. Niwa, T. Hattori, M. Takahashi, K. Shirai, M. Watanabe,
- 7 M. Niwa, T. Hattori, M. Takahashi, K. Shirai, M. Watanabe, and Y. Murakami, Anal. Chem., 1979, 51, 46.