The Rate of the Self-exehange Reaction of Ni" cyclam2+/Ni1" cyclam3+ measured using 61Ni E.S.R. and a Marcus Cross Correlation Reaction

A. McAuley," D. H. Macartney, and T. Oswald

Department of Chemistry, University of Victoria, Victoria, B.C., Canada, V8W 2Y2

The e.s.r. spectra of labelled $[Nj^{III}1,4,8,11$ -tetra-azacyclotetradecane]³⁺ $(61Ni, I = 3/2)$ complexes have been used to determine the first rates of electron exchange between Ni^{ll}- and Ni^{ll1}-tetra-azamacrocycle complexes; independent measurements based on the reaction **of Felll(tris-polypyridine)** complexes provide a more accurate value for the self-exchange parameter.

There has been considerable recent interest in the characterization and spectroscopic properties of nickel(m) tetraazamacrocycle complexes.^{$1-4$} To date, however, there have been relatively few kinetic studies involving either complex formation or reduction to the nickel (n) state. The range of E° values for the NiL^{3+/2+} couples [ca. 0.96 V where L = **1,4,8,1l-tetra-azacyclotetradecane** (cyclam) to 1.24 V where $L = meso-5,5,7,12,14,14$ -hexamethyl-1,4,8,11-tetra-azacyclotetradecane (Me_scyclam)] renders them attractive as reagents for electron-transfer studies involving linear free energy correlations such as those developed by Marcus⁵ and Hush.⁶ Recent investigations in these laboratories are consistent with an outer-sphere behaviour.⁷ In order to make comparisons with other redox systems, however, it is necessary to know accurately values for the rate of the Ni^{II}L/Ni^{III}L selfexchange reaction. No data of this kind are currently available. Also, the geometry change on transferring from a lowspin square planar d⁸ Ni¹¹ to a low-spin tetragonally distorted d^7 Ni^{III} ion may influence the rates.

In this study we have used $Ni^{III}(cyclam)³⁺$ which of the aquo-complexes so far prepared is most stable with respect to intramolecular decomposition. Some kinetic experiments have also been made using the $Ni(Me₆cyclam)³⁺$ complex. Two approaches have been made to evaluate the self-exchange parameters.

(i) The Marcus relationship may be expressed⁵ as shown in equation (1), where $\lambda_{12} = 2(\Delta G_{11}^* + \Delta G_{22}^*)$ and W_{12} , the work

$$
\Delta G_{12}^* = W_{12} + \lambda_{12}/4 + \Delta G_{12}^{\circ}/2 + (\Delta G_{12}^{\circ})^2/4\lambda_{12}
$$
 (1)

term, is small under the experimental conditions used $(I = 1.00 \text{ mol dm}^{-3})$.⁸ The self-exchange activation energy, ΔG_{11}^* , for Ni(cyclam)^{2+/3+} may be determined from the activation parameters of reaction (2) where (LL) represents

$$
\text{Ni(cyclam})^{2+} + \text{Fe(LL)}_{3}^{3+} \underset{k_{21}}{\overset{k_{12}}{\rightleftharpoons}} \text{Ni(cyclam)}^{3+} + \text{Fe(LL)}_{3}^{2+} \tag{2}
$$

a polypyridine ligand and where the reduction potentials of the complexes and self-exchange parameters are known.⁹

The rate constants and activation parameters for reaction (2) with **Fe(4,4'-dimethyl-2,2'-bipyridine)**³⁺ $(E^{\circ} = 0.96 \text{ V})$ and Fe(4,7-dimethyl-1,10-phenanthroline)³⁺ $(E^{\circ} = 1.00 \text{ V})$ in 1.00 mol dm⁻³ toluene-p-sulphonic acid are presented in Table 1. Using $\Delta G_{22}^* = 14.6 \pm 2 \text{ kJ} \text{ mol}^{-1}$ for the iron(II) polypyridine complexes,⁹ substitution in equation (1) yields

a ΔG_{11}^* value for NiL^{2+/3+} of 48.1 \pm 9.0 kJ mol⁻¹. In the case of the reaction of Ni(Me₆cyclam)²⁺, however, the higher oxidation potential of the nickel(III) species is evident from the fact that the k_{obs} against $[Ni^{II}]_t$ plots (Table 2), although linear in the concentration range used, apparently do not pass through the origin, indicating reaction reversibility.

(ii) All nickel (m) complexes so far studied show a characteristic e.s.r. spectrum with differing g_{\perp} and g_{\parallel} parameters owing to a distorted tetragonal geometry.1° Sulphato-ligands co-ordinated axially to these centres stabilize the complexes with respect to intramolecular reduction. 3 Figure 1 shows the e.s.r. spectrum of ${}^{61}\text{Ni}(\text{cyclam})(\text{SO}_4)_2^-$ (86% abundant ${}^{61}\text{Ni}$) at 77 K where the splitting of the g_{\parallel} feature ($A_{11} = 37.7 \text{ G}$) is observed owing to the nuclear spin $(I = 3/2)$ of ⁶¹Ni. **A** similar spectrum is obtained for ${}^{61}Ni(cyclam)(OH₂)₂³⁺$ in 1.0 mol dm^{-3} HClO₄. The splitting is centro-symmetric around the g_{\parallel} value observed for ⁵⁸Ni(cyclam)(OH₂)³⁺ also shown. Reaction of a solution of 61 Ni¹¹cyclam²⁺ prepared

Table 2. First-order rate constants for reaction of $Fe^{III}(phen)^{3+}_{3}$ and Fe(bipy) 3^+ with [Ni^{II}-Me₆cyclam]²⁺.^a

$Fe(phen)_3^3$ ⁺					
	$104[NiII]/mol dm3$	2.15	4.30	5.15	5.35
$Fe(bipy)33+$	k_{obs}/s^{-1}	33.3	45.6	49.6	55.5
	$104[NiII]/mol dm3$	1.88	5.64	9.40	15.0
	$k_{\rm obs}/\rm s^{-1}$	17.0	22.0	277	34.3

^a Fe^{III}(LL)³⁺ = *ca*. 10⁵ mol dm⁻³, Fe^{II}(LL)²⁺ = *ca*. 3 × 10⁻⁶ mol dm^{-3} , $I = 1.00$ mol dm⁻³.

Figure 1. (a) The e.s.r. spectrum of 61 Ni(cyclam)(SO₄)^{$\frac{1}{2}$}. (b) The corresponding spectrum of the ⁵⁸Ni^{III} complex. (c) Diphenylpicrylhy drazyl.

Figure 2. (a) E.s.r. spectrum of 1.16×10^{-4} mol dm⁻³ [⁶¹N₁^{II}-(cyclam)]²⁺ and 1.66 \times 10⁻⁵ mol dm⁻³ [⁵⁸Ni¹¹¹(cyclam)]³⁺ 9.5 s after mixing, $T = -16$ °C. (b) Computer simulated spectrum of $2(a)$; see the text. (c) Equilibrium spectrum of $2(a)$, $t = 300$ s.

from Ni metal (86.44 $\frac{9}{6}$ ⁶¹Ni) with a solution of ⁵⁸Ni¹¹¹cyclam³⁺ establishes the equilibrium (3), where $k_f = k_r$. The reaction

 61 Ni^{II}(cyclam)²⁺ + 58 Ni^{III}(cyclam)³⁺

$$
k_I \parallel k_r
$$
⁶¹Ni^{III}(cyclam)³⁺ + ⁵⁸Ni^{II}(cyclam)²⁺ (3)

rate may be deduced by observing the diminution of the g_{\parallel} feature from the 68Ni111 and the appearance of the quartet associated with the splitting by the 61Ni111 nucleus. In our experiment, a 7:1 excess of 61 Ni¹¹(cyclam)²⁺ was mixed with 68Ni¹¹¹(cyclam)³⁺. Solutions ([Ni^{I1}] = 1.6×10^{-4} M, [Ni^{I11}] = 1.66×10^{-5} M) were 1.00 mol dm⁻³ in HClO₄ and at -16[°]C. **As** soon as mixing was complete a sample was placed in an e.s.r. tube and frozen as quickly as possible in liquid nitrogen. The reaction time was measured reproducibly to ± 1.0 s, the total time elapsed being 9.5 s. The e.s.r. spectrum was recorded [Figure 2(a)], the tube warmed to 25 *"C* for *5* min, and the equilibrium spectrum then measured [Figure 2(c)]. Each spectrum represents the addition of two signals from ⁶¹Ni^{III} and 58Ni111. Knowing the equilibrium concentrations accurately and the characteristics of the individual spectra, the equilibrium spectrum was simulated. The ratio of the central peak area $(58Ni^{III1})$ to that of the low-field peak $(61Ni^{III1})$ calculated from the simulation agrees with that of the experiment to within 15%. It is seen that the spectrum at $t = 9.5$ *s* is closely similar to that at equilibrium, indicating that the reaction is largely

completed within the time of measurement. This is consistent with a rate constant for the exchange where $k_f = ca$. 10^3 dm³ mol⁻¹ s⁻¹ since under the concentration conditions used, the reaction may be calculated to be $>70\%$ complete. The data were collected at -16 °C in an attempt to derive a more accurate value for k_f . Activation enthalpies for reactions of this type are known to be small, $\leq 10 \text{ kJ}$ mol⁻¹,⁸ so that the rate constant would not be expected to vary greatly in the range 250-295 K. These e.s.r. data are considered to provide independent support for a rapid self-exchange process.

The relatively rapid reaction rate suggests that any energy barrier associated with the geometry differences for **d7** and $d⁸$ is small. There are reports, however, of some weak axial co-ordination of water in the Ni^{II} complexes.¹¹ If such species were reactive the activation parameters would reflect only the electron transfer process. Owing to these uncertainties in the nature of the axial solvation of the nickel (n) complex and of the Ni^{III}-N bond lengths, we have not incorporated the work terms associated with the various free energy changes. These terms are such, however, as to change only slightly the value of ΔG_{11}^* .

Received, 14th September 1981; Com. 1093

References

- 1 E. **S.** Gore and D. H. Busch, *Inorg. Chem.,* 1973, **12,** 1.
- 2 **L.** Fabrizzi, *J. Chem. Soc., Chem. Commun.,* 1979, 1063.
- 3 **E.** Zeigerson, G. Ginsburg, N. Schwartz, *Z.* Luz, and D. Meyerstein, *J. Chem. Soc., Chem. Commun.,* 1979, 241; H. Cohen, **L. J.** Kirschenbaum, **E.** Zeigerson, M. Jaacobi, **E.** Fuchs, G. Ginsburg, and D. Meyerstein, *Inorg. Chem.,* 1979, **18,** 2763.
- **4 G.** Ferraudi, *Inorg. Chem.,* 1979, **18,** 3230.
- *5* R. A. Marcus, *Annu. Rev. Phys. Chem.,* 1964, **15,** 155.
- 6 N. **S.** Hush, *Trans. Faraday SOC.,* 1961, **57,** 557.
- 7 **R. I.** Haines and A. McAuley, *Znovg. Chem.,* 1979, **18,** 719; J. C. Brodovitch, A. McAuley, and T. Oswald, *Inorg. Chem.,* to be published.
- 8 **M.** J. Weaver and E. L. Yee, *Inorg. Chem.,* 1980, **19,** 1936.
- There are several values reported for ΔG_{22}^* . Measurement of the rate constant (I. Ruff and **M.** Ziamanyi, *Electrochim. Acta*, 1973, **18**, 515) $k_{22} = 3 \times 10^8$ dm³ mol⁻¹ s⁻¹ leads to **a** value $\Delta G_{22}^* = 14.6 \text{ kJ}$ mol dm⁻³ which has been used in the present study. Recent applications of the Marcus theory are consistent with values in the range 10-15 **kJ** mol dm-3 (see **E.** Pelizzetti, E. Mentasti, and E. Pramauro, *Inorg. Chem.,* 1976, **15,** 2898;
- 1978, **17,** 1181). 10 R. I. Haines and A. McAuley, *Coord. Chem. Rev.,* 1981, in the press.
- 11 A. Anichini. L. Fabrizzi, P. Paoletti, and R. M. Clay, *Inorg. Chim. Acta.,* 1977, **24,** L21; A. **E.** Merbach, P. Moore, and K. E. Newman, *J. Magn. Reson.,* 1980, **41, 30.**