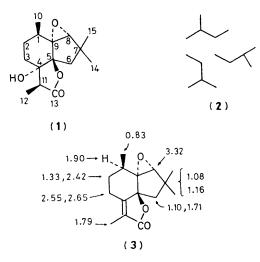
Hydrogen Rearrangements in the Biosynthesis of the Sesquiterpenoid, Alliacolide

A. Peter W. Bradshaw, James R. Hanson, *a and Ian H. Sadlerb

^a School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9QJ, U.K. ^b Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, U.K.

The occurrence of hydrogen rearrangements to C-1 and from C-5 to C-6 during the biosynthesis of alliacolide has been demonstrated by ²H n.m.r. experiments.


Alliacolide (1) is one of a group of biologically active metabolites of the Basidiomycete, *Marasmius alliaceus*.^{1–3} Recently we have shown⁴ that the labelling pattern from $[1-^{13}C]$ - and $[1,2-^{13}C]$ -acetate is consistent with the formation of the sesquiterpenoid carbon skeleton from the three isoprene units as shown in (2). Examination of the mevalonoid hydrogen labelling pattern now reveals that a number of rearrangements are involved in this biosynthesis.

[4(R)-4-³H,2-¹⁴C]- and [5-³H₂,2-¹⁴C]-mevalonic acids (MVA's) were fed to *Marasmius alliaceus* after 14 days growth. The alliacolide (1) was isolated after a further 21 days and converted into dehydroalliacolide (3). The ³H:¹⁴C results are given in Table 1. Two of the three centres (C-4 and C-9) which would be expected to be labelled by [4(R)-4-³H]MVA are fully substituted and hence, in order to account for the incorporation of two labels, one *pro-*4(R)-

mevalonoid hydrogen atom must be involved in a rearrangement. The site of the 4-mevalonoid labels was determined using $[4-^{2}H_{2}]$ mevalonate.

Careful proton spin decoupling studies at 360 MHz enabled the proton resonances of dehydroalliacolide to be assigned [see (3)]. Signals in the ²H n.m.r. spectrum at δ 1.83 and 1.03, corresponding to 1-H and 6-H respectively, were found to be enriched in samples prepared biosynthetically from [4-²H₂]mevalonate. C-1 was thus the terminus of a hydrogen rearrangement involving a *pro*-4(*R*)-mevalonoid hydrogen atom.

One of the centres (C-5) which would be expected to be labelled by a $[5-^{3}H]$ mevalonate is fully substituted and another (C-8) bears only one hydrogen atom. Therefore in order to account for the incorporation of the fourth $[5-^{3}H]$ mevalonoid label, it must also be involved in a rearrange-

 1 H N.m.r. signals (from Me₄Si) of dehydroalliacolide were determined in CDCl₃ at 360 MHz.

 Table 1. Incorporation of mevalonates into alliacolide (1) and dehydroalliacolide (3).

	[4(R)-4-	
	³ H,2- ¹⁴ C]MVA	[5- ³ H ₂ ,2- ¹⁴ C]MVA
³ H: ¹⁴ C ratio in MVA	12.98:1	22.6:1
Atom ratio	3:3	6:3
Quantity fed (μ Ci ¹⁴ C)	11.8	13.15
³ H: ¹⁴ C ratio in (1)	8.22:1	14.93:1
Atom ratio	1.90:3	3.96:3
% Incorporation (¹⁴ C)	0.99	1.59
³ H: ¹⁴ C ratio in (3)	8.14:1	15.09:1
Atom ratio	1.9:3	4:3

ment. Since there was no change in the ${}^{3}H:{}^{14}C$ atom ratio in the formation of dehydroalliacolide (3), the extra label is not at C-11 (*cf.* avocettin biosynthesis).⁵ The sites of labelling were located by feeding $[5-{}^{2}H_{2}]$ mevalonate to *Marasmius* alliaceus. Signals assigned to 3-H (α and β) (δ 2.62), 6-H (δ 1.71), and 8-H (δ 3.34) in the ²H n.m.r. spectrum of the resultant dehydroalliacolide were enriched. Hence the rearrangement has led to a label at C-6. This rearrangement may involve a 1,2-shift (C-5 \rightarrow C-6) or a 1,3-shift (C-8 \rightarrow C-6). The former occurs within an isoprene unit and may therefore be distinguished from the latter by the use of $[5-{}^{2}H_{2},4-{}^{13}C]$ mevalonate. In the case of a 1,2-shift, a ²H:¹³C coupling will be generated whilst, provided there is a sufficient dilution with unlabelled material, a 1,3-shift will occur between labelled and unlabelled isoprene units and no such coupling will result. Since deuterium has a spin of 1 and carbon-13 a spin of $\frac{1}{2}$, these couplings are more easily observed in the deuterium spectrum. The dehydroalliacolide (3) derived from $[5-{}^{2}H_{2}, 4-{}^{13}C]$ mevalonate, showed a doublet, J 21 Hz, in place of a singlet at δ 1.71 in accordance with a 1,2-shift.

Alliacolide joins the increasing number of terpenoid substances in which a secondary methyl group has been shown to be generated by a hydrogen rearrangement.⁶ Furthermore many sesquiterpenoids derived from the Basidiomycetes contain a cyclopentane ring bearing a methylene group which is probably labelled by C-4 of mevalonate. The present results suggest these methylenes might also be generated by a hydrogen shift.

Received, 1st December 1981; Com. 1387

References

- 1 T. J. King, I. W. Farrell, T. G. Halsall, and V. Thaller, J. Chem. Soc., Chem. Commun., 1977, 727.
- 2 I. W. Farrell, T. G. Halsall, V. Thaller, A. P. W. Bradshaw, and J. R. Hanson, J. Chem. Soc., Perkin Trans. 1, 1981, 1790.
- 3 T. Anke, W. H. Watson, B. M. Grannetti, and W. Steglich, *Planta Med.*, 1980, **39**, 194.
- 4 A. P. W. Bradshaw, J. R. Hanson, and I. H. Sadler, J. Chem. Soc., Chem. Commun., 1981, 631.
- 5 F. Dorn, P. Bernasconi, and D. Arigoni, *Chimia*, 1975, **29**, 25. 6 A. P. W. Bradshaw, J. R. Hanson, R. Nyfeler, and I. H.
- Sadler, J. Chem. Soc., Chem. Commun., 1981, 649.