300

¹⁵N–¹³C Coupling Constants and ¹⁵N/¹⁴N Isotope Effects on ¹³C N.M.R. Chemical Shifts of Pyrimidine-2(1*H*),4(3*H*),5(6*H*),6-tetrone 5-Oximato Complexes

Claude Bremard,*a Bernard Mouchel,a and Stéphane Sueurb

^aL.A.S.I.R., C.N.R.S., Université des Sciences et Techniques de Lille I, Bât. C.5, 59655 Villeneuve D'Ascq Cedex, France

^b Ecole Nationale Supérieure de Chimie de Lille, 59652 Villeneuve D'Ascq Cedex, France

¹⁵N-Labelling of the oxime function of pyrimidine-2(1*H*),4(3*H*),5(6*H*),6-tetrone 5-oximato iron and ruthenium complexes has enabled the measurement of one- and two-bond ¹³C–¹⁵N coupling constants and upfield isotopic shifts in the ¹³C n.m.r. spectra.

During the course of the assignment of the ¹³C n.m.r. resonances for free and co-ordinated oximes it was found necessary to enrich the oxime function in ¹⁵N. This labelling has permitted the measurement of ¹⁵N-¹³C coupling constants and ¹⁴N/¹⁵N isotopic effects on ¹³C resonances. Interesting applications of the isotopic effect on ¹³C chemical shifts in the case of ¹⁶O/¹⁸O substitution have already been reported in studies of metal–carbonyl interactions.^{1,2} Unfortunately few data concerning the ¹⁴N/¹⁵N isotopic effect³ and ¹⁵N-¹³C couplings^{3,4} in co-ordination chemistry are available in the literature.

We report herein the results concerning pyrimidine-2 (1*H*), 4(3*H*), 5(6*H*), 6-tetrone-5-oxime, (1) (denoted H₃vi); the anion (2) obtained by deprotonation of the oxime function; the trischelate fac-[Fe(H₂vi)₃]⁻ (3); fac-[Ru(H₂vi)₃]⁻, (4).

The natural abundance Fourier transform ¹³C n.m.r. proton noise decoupled spectra† of the unlabelled compounds (1)—(4) dissolved in $(CD_3)_2SO$ each contain four signals. Those for (3) and (4) indicate three equivalent ligands and suggest a *facial* configuration for the trischelates with a rigid structure in solution. The possibility of geometrical changes within the n.m.r. time scale may be ruled out. It was not possible to assign the ¹³C resonances with the help of classical decoupling techniques because the ¹³C–¹H coupling constants were found to be less than 0.2 Hz. In order to

Table 1. ${}^{n}J$ (${}^{15}N$ - ${}^{13}C$) Values and ${}^{14}N/{}^{15}N$ isotope effects on ${}^{13}C$ chemical shifts in oximato complexes.

с ·	^{1}J [N(5)–C(5)]	C(5) isotopic shift	$^{2}J [N(5)-C(6)]$
Species	/ HZ	/p.p.m.	/HZ
(1)	2.55 ± 0.08	$-0.025~\pm~0.003$	$10.47\ \pm\ 0.08$
(2)	5.51 ± 0.14	-0.028 ± 0.007	9.18 ± 0.14
(3)	$4.39~\pm~0.12$	-0.029 ± 0.006	$5.86~\pm~0.12$
(4)	5.13 ≟ 0.08	-0.030 ± 0.003	$5.61~\pm~0.08$

obtain an unequivocal assignment, ¹⁵N-labelled compounds were synthesized. The ¹⁵N(5)-enriched (96%) oxime was prepared by the standard procedure of C-oximation using barbituric acid and labelled Na¹⁵NO₂ (96%). The ¹⁵Nlabelled compounds (2)---(4) were synthesized from (1) as previously described^{5,6} for unlabelled compounds and their natural abundance ¹³C n.m.r. spectra were obtained, from which absolute values for ^{n}J [¹⁵N(5)-¹³C] were deduced.

Figure 1. ¹⁵N-Labelled (60%) natural abundance ¹³C carbonyl and oxime n.m.r. signals for (4) in $(CD_3)_2SO$. The ¹⁵N-labelled ¹³C(5) oxime signal is shifted upfield by 0.030 p.p.m. from its unlabelled analogue.

The absolute coupling constants, ${}^{1}J[N(5)-C(5)]$, observed for the free oxime (1) and the oximate (2) (Table 1) are in the same range as those reported for several other oximes. The ^{1}J values for the oximato complexes (3) and (4) are in the same range as those reported for some cyano³ and methyldimethylaminocarbene complexes.⁴ The ${}^{1}J$ values listed in Table 1 are less than 6 Hz and are always smaller than the corresponding ${}^{2}J[N(5)-C(6)]$ values for the α -anti carbon atom C(6) while ${}^{2}J[N(5)-C(4)]$ values for the α -syn carbon atom C(4) are negligible (less than 0.2 Hz) as are the ${}^{4}J[N(5)-C(2)]$ values. The present results for (1) and (2) are in good agreement with those previously reported for oxime derivatives such as acetophenone oximes:7 the two-bond couplings to nitrogen can be related to lone pair orientation. Upon co-ordination, significant changes are observed in the chemical shifts and the ¹⁵N-¹³C coupling constants (Table 1) of the C(5) and C(6) resonances; these observations indicate that co-ordination occurs through the N(5) and O(6) atoms.

The ¹⁵N-isotope effect was measured by the following procedure. The ¹³C n.m.r. spectrum of the ¹⁵N-labelled compound was obtained. A measured quantity (40%) of un-

labelled compound was added to the ¹⁵N sample and the spectrum was obtained for the labelled-unlabelled mixture (Figure 1). Appreciable upfield shifts (ca. 0.03 p.p.m.) were observed for all the compounds for the carbon bearing the ¹⁵N atom, taking the corresponding ¹³C signal of the unlabelled compound as a standard. The isotopic shifts for the carbon bearing the ¹⁵N atom are comparable in magnitude and direction with the recently reported ¹⁴N/¹⁵N one-bond isotope effect on ¹³C chemical shielding in cyano complexes³ and they are also comparable with the ¹⁶O/¹⁸O isotope effect observed in metal carbonyl derivatives.1 It should be noted that a weak second atom shift for the atom adjacent to C(6)can be detected when the solubility of the compound allows a good signal: noise ratio to be obtained. Indeed the ¹³C-¹⁵N couplings permit a good determination of the n.m.r. peaks (Figure 1) without the help of the curves resolver set. After several measurements the shift is found to be significant although close to the estimated experimental error: upfield for (1) (-0.006 + 0.003 p.p.m.) and downfield for (4) $(+0.006 \pm 0.003 \text{ p.p.m.}).$

The observation of isotopic effects through several bonds appears to be a general phenomenon. Indeed after the introduction of one deuterium atom into cyclic⁸ or aliphatic⁹ compounds, shifts in the α , β , and γ carbon signals are detected. However the magnitudes of such shifts are ten-fold greater than the ¹⁴N/¹⁵N effects reported in the present work.

Received, 30th November 1981; Com. 1383

References

- 1 D. J. Darenbourg and B. J. Baldwin, J. Am. Chem. Soc., 1979, 101, 6447.
- 2 D. J. Darenbourg, B. J. Baldwin, and J. A. Froelich, J. Am. Chem. Soc., 1980, 102, 4688.
- 3 R. E. Wasylischen, D. H. Muldrew, and K. J. Friesen, J. Magn. Reson., 1980, 41, 341.
- 4 F. Kreissl, E. Meincke, E. O. Fischer, and J. D. Roberts, J. Organomet. Chem., 1976, 108, C.29.
- 5 C. L. Raston and A. H. White, J. Chem. Soc., Dalton Trans., 1976, 1915.
- 6 F. Abraham, G. Nowogrocki, S. Sueur, and C. Bremard, Acta Crystallogr., Sect. B, 1978, 24, 799.
- 7 G. W. Buchanan and B. A. Dawson, Can. J. Chem., 1977, 55, 1437.
- 8 R. A. Bell, C. L. Chan, and B. G. Sayer, J. Chem. Soc., Chem. Commun., 1972, 67.
- 9 A. P. Tulloch and M. Masurek, J. Chem. Soc., Chem. Commun., 1973, 692.