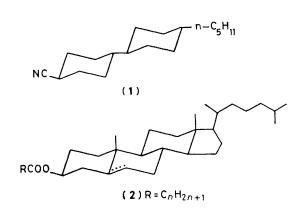
Perhydrophenanthrenes; Novel Liquid Crystals

Hermann Minas, Hans-Rüdiger Murawski, Horst Stegemeyer, and Wolfgang Sucrow*

Fachbereich Chemie, University of Paderborn, D-4790 Paderborn, Germany


Some perhydrophenanthrenes, prepared in order to fill the gap between bicyclohexanes and cholesteryl esters as liquid crystals, show nematic phases.

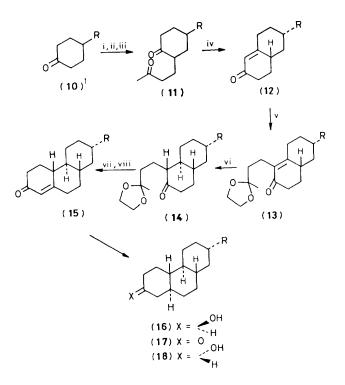
Recently Eidenschink *et al.*^{1,2} demonstrated liquid crystalline behaviour for bicyclohexanes possessing wide nematic ranges, *e.g.* (1). Bearing in mind that cholesteryl (and cholestanyl) esters (2) are well known to form cholesteric mesophases, we felt that the novel perhydrophenanthrenes (3)–(9) should represent a link between these two types and may be of interest for practical applications.

The synthesis of the key ketones (15) ($R = n-C_4H_9$ through $n-C_8H_{17}$) was accomplished as shown in Scheme 1. Simple Birch reduction of (15) gave (17); further Birch reduction after intermediate addition of methanol gave (16).⁵ The strong bases applied and Birch reductions are known to give the thermodynamically stable configurations of substituents (equatorial) and ring connections (*trans*). This could be confirmed by single peaks in the g.l.c. and ¹³C-n.m.r. spectra for compounds (12) to (17). Acetylation of (16) ($R = n-C_6H_{13}$) afforded the acetate (3) which showed nematic but monotropic

Table 1. Phase transitions (°C) of compounds (4)(8). ^a				
	С	N I	ΔT	
(4) (5) (6) (7) (8)	68 70 57 66 57	(60) 78 76 80 79	Monotropic 8 20 14 22	

^a C = crystalline, N = nematic, I = isotropic, ΔT = nematic range; phase transition temperatures were determined by means of polarizing microscopy as well as by differential scanning calorimetry measurements (Perkin-Elmer DSC-2).

(3)	$X = OCOCH_3,$	$R = n - C_6 H_{13}$
(4)	$X = OCOC_{b}H_{11}-n,$	$R = n - C_4 H_9$
(5)	$X = OCOC_5H_{11}-n,$	$\mathbf{R} = \mathbf{n} \cdot \mathbf{C}_{5} \mathbf{H}_{11}$
(6)	$\mathbf{X} = \mathbf{OCOC}_{5}\mathbf{H}_{11}\mathbf{\cdot n},$	$\mathbf{R} = \mathbf{n} \cdot \mathbf{C}_{6} \mathbf{H}_{13}$
(7)	$\mathbf{X} = \mathbf{OCOC}_{5}\mathbf{H}_{11}\mathbf{\cdot}\mathbf{n},$	$\mathbf{R} = \mathbf{n} \cdot \mathbf{C}_7 \mathbf{H}_{15}$
(8)	$X = OCOC_{s}H_{11}-n,$	$\mathbf{R} = \mathbf{n} - \mathbf{C}_{8} \mathbf{H}_{17}$
(9)	X = CN,	$\mathbf{R} = \mathbf{n} - \mathbf{C}_{6} \mathbf{H}_{13}$


behaviour on cooling the molten compound of m.p. 74 °C to below 65 °C. The hexanoic esters (4)—(8) [from (16) with hexanoyl chloride and pyridine] revealed the nematic phase ranges given in Table 1.

There is a considerable alternation of $T_{\rm CN}$ with chain length of R whereas the influence on $T_{\rm NI}$ is rather small. As a consequence the nematic range $\Delta T = T_{\rm NI} - T_{\rm CN}$ is widest in the case of even- and not odd-numbered side chains. Initial investigations show that the birefringence values of the esters are very low ($\Delta n \leq 0.035$); more detailed determinations of their physical properties will be collected in the near future.

Treatment of (16) ($R = n-C_6H_{13}$) with triphenylphosphine dibromide and potassium cyanide gave only inseparable mixtures of the α - and β -nitrile epimers; however, reduction of (17) ($R = n-C_6H_{13}$) with K-Selectride (tetrahydrofuran, $-80 \ ^{\circ}C)^6$ gave the axial alcohol (18) ($R = n-C_6H_{13}$) the toluene-*p*-sulphonate of which afforded a 6% yield of pure equatorial nitrile (9)⁷ together with higher amounts of elimination products. Compound (9) proved to be nematic in only a small range between 89 and 91 $^{\circ}C$.

From these results it is concluded that the perhydrophenanthrenes so far investigated resemble the cholesterol-based liquid crystals more than those of the bicyclohexane type.

We thank the State of Nordrhein-Westfalen for a research grant and Prof. P. F. Casals, Université du Maine, Le Mans, France, for a gift of the cyclohexenones from which we

Scheme 1. Reagents: i, morpholine; ii, $H_2C=CHCOCH_3$; iii, HCl (ref. 3); iv, NaOH, C_6H_6 ; v, NaCH₂SOCH₃, BrCH₂CH₂C[OCH₂]₂-CH₃ (ref. 4); vi, Li/NH₃ (ref. 5); vii, HCl, C_6H_6 ; viii, NaOH, C_6H_6 . All new compounds were characterized by ¹H-n.m.r. spectroscopy, g.l.c., and satisfactory elemental analyses.

prepared compounds (10). The assistance of Mr. T. Blümel in obtaining the phase transition data is gratefully acknowledged.

Received, 7th August 1981; Com. 961

References

- 1 R. Eidenschink, D. Erdmann, J. Krause, and L. Pohl, Angew. Chem., Int. Ed. Engl., 1977, 16, 100.
- 2 R. Eidenschink, D. Erdmann, J. Krause, and L. Pohl, Angew. Chem., Int. Ed. Engl., 1978, 17, 133.
- 3 R. L. Augustine and J. A. Caputo, Org. Synth., 1973, Coll. Vol. 5, 869.
- 4 Z. G. Hajos, R. A. Micheli, D. R. Parrish, and E. P. Oliveto, J. Org. Chem., 1967, 32, 3008.
- 5 D. Caine, Org. React., 1976, 23, 1.
- 6 H. C. Brown and S. Krishnamurthy, J. Am. Chem. Soc., 1972, 94, 7159.
- 7 H. B. Henbest and W. R. Jackson, J. Chem. Soc., 1962, 954.