Photoreduction of the Paraquat Dication (I ,l'-Dimethyl-4,4'-bipyridinium) by Visible Light *via* **its Charge Transfer Complex with a Dithioanion**

Alain Deronzier

Laboratoires de Chimie, Laboratoire d'Electrochimie Organique et Analytique (L.A. C.N.R.S. 321), De'partement de Recherche Fondamentale de Grenoble, C.E.N.G., 85 X, 3804 I Grenoble Cedex, France

Photoproduction by *visible* light of the mild reductant 1,1'-dimethyl-4,4'-bipyridinium (PQ· +) occurs to an appreciable extent in acetonitrile *via* irradiation of the charge-transfer complex of **PQ2** + with a dithioanion.

Photoreduction by visible light of 1,1'-dimethyl-4,4'-bipyridinium salts (paraquat, PQ^{2+}) into the corresponding cation radical PQ^+ which is a mild reducing agent, is currently achieved in the presence of a photosensitizer such as $Ru(bpy)₃²⁺$ or Zn(TPP) (bpy = 2,2'-bipyridine; TPP = tetraphenylporphyrin) and an irreversible electron donor. This system has been used extensively for photoredox catalysis, especially for the photoreduction of water? We report here a new system where PQ^{+} is photoproduced by visible light in an organic medium *via* the irradiation of a charge-transfer complex between PO^{2+} and a particular electron donor. It is well established that PQ^{2+} gives chargetransfer complexes with various electron-donor species and that photolytic excitation in their charge-transfer band can result in electron transfer.² Generally, rapid back-electrontransfer prevents the effective build up of PQ^+ by returning the system to the ground state.² In our system, the dark reaction is retarded by using a dithioanion as an irreversibly oxidizable electron donor. The only previously reported example where a net reaction occurred after excitation involved excitation in the u.v. region. 3

An acetonitrile solution of $PQ^{2+}[BF_4^-]_2$ in the presence of a large excess of the dithiophosphate anion dtp- $[dtp]$ $(EtO)₂PS₂$ or $(MeO)₂PS₂$ with Na⁺ as counter-ion; numeri-

Figure 1. Spectral change accompanying the complexation of PQ²⁺ by dtp⁻ in MeCN: PQ²⁺ = 1.97 \times 10⁻³ M; (a) no dtp⁻; (b) dtp⁻ = 4.2 \times 10⁻³ M; (c) dtp⁻ = 10.6 \times 10⁻³ M; (d) dtp⁻ = **20.4** \times **10**⁻³**m**; **(e)** dtp⁻ = 37.6 \times 10⁻³**m**; **(f)** dtp⁻ = 70.2 \times
10⁻³m; **(g)** dtp⁻ = 12.2 \times 10⁻²**m**. **M**; (c) dtp⁻ = 10.6 \times

cal results reported here are for the $(MeO)_2PS_2$ ⁻ system] exhibits an absorption band in the visible region centred around 400 nm (Figure 1). The origin of this band is attributed to a charge transfer transition between the two redox sites of the complex [equation (1)]. This new band is not

$$
PQ^{2+} + ndtp^{-} \stackrel{K}{\rightleftharpoons} (PQ^{2+}, ndtp^{-}); n = 1 \text{ or } 2
$$
 (1)

present with the isolated components. The equilibrium constant *K* of equation (1) cannot be determined easily by the usual spectrophotometric methods⁴ because two other equilibria interfere with the equilibrium (1). First, as demonstrated previously by us, dtp^- , like other dithioanions,⁵ is associated with its counter-ion to form an ion-pair [equation (2)l.t Another complication arises from the possible association between **PQ2+** and its counter-ion in acetonitrile **[**equation (3)]. \ddagger

$$
Na^{+} + dtp^{-} \rightleftharpoons (Na^{+}, dtp^{-})
$$
 (2)

$$
PQ^{2+} + 2BF_4^- \rightleftharpoons (PQ^{2+}, 2BF_4^-) \tag{3}
$$

Irradiation into the charge-transfer band of the **(PQ²⁺**, $ndtp^-$) complex does not result in any emission in the 420-700 nm region at room temperature. Conventional flash photolysis with visible light $(\lambda > 400 \text{ nm})$ of an oxygen-free solution of PQ^{2+} (5 \times 10⁻⁴ M) and dtp⁻ (1.1 \times 10⁻² M) in acetonitrile shows that photoexcitation induces the electron transfer in equation (4). PQ⁺⁺ remains in solution after the flash because the dimerization of two dtp- radicals into the corresponding disulphide (dtp), [equation **(5)]** is more rapid than the back-electron-transfer in equation (6) between dtp^{*} and **PQ+.** In an experiment using an excitation energy of

$$
(\text{PQ}^{2+}, n\text{dtp}^-) \rightarrow \text{PQ}^{+} + \text{dtp}^{+} + (n-1) \text{dtp}^{-} \qquad (4)
$$

$$
2 \text{ dtp} \rightarrow (\text{dtp})_2 \tag{5}
$$

$$
PQ^{+} + dtp \rightarrow PQ^{2+} + dtp^{-} \tag{6}
$$

100 J, 1.5×10^{-6} M of PQ⁺⁺ is produced after the flash, corresponding to a yield of **0.3%** for the photoreduction of **PQ2+.** With continuous irradiation, the amount of **PQ*+** builds up but its concentration reaches a maximum, **[PQ*+]max,** which is relatively low in accordance with the low value of the yield observed by flash techniques: $[PQ^+]_{max} = 0.25 \times 10^{-4}$ M after irradiation of PQ^{2+} (1.2 \times (10^{-3} M) and dtp⁻ (10^{-2} M) using filtered light $(\lambda > 400 \text{ nm})$ from a 250 W Hg lamp. When the illumination is stopped after **[PQ*+]ma,** is reached, **PQ-+** disappears with first-order kinetics $(k = 1.4 \pm 0.1 \times 10^{-3} \text{ s}^{-1})$. This very slow reaction, which competes with the photoproduction of PQ⁺⁺, appears to be, at least in part, the reduction of $(dtp)_2$ by PQ^{+} [equation (7)] into the starting material as demonstrated by the following electrochemical experiments.

$$
PQ^{+} + 1/2(dtp)_{2} \rightarrow PQ^{2+} + dtp^{-}
$$
 (7)

As for some other dithioanions⁶ electrochemical oxidation in acetonitrile containing 0.1 m Et₄NCIO₄ transforms dtp⁻ $(E_p^a = 0.30 \text{ V})\$ § into the disulphide (dtp)₂. The latter in turn may be reduced back $(E_p^c = -0.97 \text{ V})$ to dtp⁻. Although PQ^{2+} is reduced more easily $(E_p{}^c = -0.74 \text{ V})$ than $(dtp)_2$, exhaustive reduction at -0.80 V of a solution of PQ²⁺ in the presence of 0.5 equiv. of (dtp) , leads to quantitative formation of PQ⁺⁺ and dtp⁻. The total coulometry involves two electrons per mole of PQ²⁺. At the beginning of the electrolysis the blue colour of **PQ*+** builds up very slowly. This behaviour is typical of that for the indirect reduction by an electrogenerated stable radical.⁷ The homogeneous electron transfer between $(\text{dtp})_2$ and the electrochemically generated **PQ*+** is coupled with a fast chemical reaction, in our case the breaking of the **S-S** bond. Similar electrochemical indirect reductions of disulphides were reported recently.⁷ This experiment shows clearly that PQ⁺⁺ can reduce $(\text{dtp})_2$ although the ΔG value estimated from the cyclic voltammetry results of reaction (7) seems to be positive.

Although the yield for PQ^+ photoproduction is still low, our findings definitely indicate that this type of chargetransfer complex can be used to produce the mild reducing agent PQ⁺⁺ in an exploitable amount by irradiation with *visible* light. By coupling this type of complex with an appropriate weak electron acceptor it should be possible to

t Addition of NaClO, causes a decrease of the charge-transfer band intensity because equilibrium *(2)* is displaced to the right.

^{\$} Addition of a specific strong complexing agent of Na+ such as a crown ether does not result in an increase in the intensity **of** the charge- transfer band.

Q All potentials are determined at a Pt electrode by cyclic voltam-metry with a sweep rate of 0.04 **V** s-l. Potentials are reported *vs.* Ag/Ag+ **M)** as reference electrode.

⁷ This yield is calculated using the total concentration of **PQ2+,** complexed and uncomplexed. If we assume a complexation constant $K < 50$, which is usually the case for PQ^{2+} charge-transfer complexes in organic solvents,⁸ the yield is at least three transfer complexes in organic solvents,⁸ the yield is at least three times larger.

produce a photoredox cycle such as those described recently by us with the $Ru(bpy)_3^{2+}-dithioanion$ system⁹ or to make a photoelectrochemical cell?*. This **is** being investigated.

The author **is** grateful to Professor G. Cauquis for his interest in this work and for making his laboratory available for this study.

Received, 9th November I981 ; *Corn. ¹³⁰⁵*

References

- 1 See, for example: K. Kalyanasundaram, L. Kiwi, and **M.** Gratzel, *Helv. Chim. Acta,* 1978, **61,** 2720; **A.** Moradpour, E. Amouyal, P. Keller, and H. Kagan, *Nouv. J. Chim.,* 1978, **2,** 547; K. Kalyanasundaram and M. Gratzel, *Helv. Chim. Acta,* 1980, **63,** 478.
- 2 **A.** T. Poulos, C. K. Kelly, and R. Simone, *J. Phys. Chem.,* 1981, *85,* 823, and references cited therein.
- **3 J.** R. Barnett, **A. S.** Hopkins, and **A.** Ledwith, *J. Chem. SOC., Perkin Trans. 2,* 1973, 80; N. M. D. Brown, D. **J.** Cowley, and W. J. Murphy, *J. Chem. Soc., Chem. Commun.*, 1973, 592.
- **4** See for example: G. Cauquis and A. Deronzier, *J. Inorg. Nucl. Chem.,* 1979, **4,** 1163.
- *5* **A.** Deronzier, *Electrochim. Acta,* 1979, **24,** 1257.
- 6 G. Cauquis and D. Lachenal, *J. Electroanal. Chem. Interfacial Electrochem.,* 1973, **43,** 205; C. Scrimager and **L. J.** Dehayes, *J. Inorg. Nucl. Chem. Lett.,* 1978, **14,** 12; G. Cauquis and **A.** Deronzier, *J. Chem. SOC., Chem. Commun.,* 1978, 809.
- 7 C. Degrand and **H.** Lund, *C.R. Acad. Sci., Ser. C,* 1980, **291,** 295; J. Simonet, M. Carriou, and H. Lund, *Liebigs Ann. Chem.,* 1981, 1665.
- 8 B. G. White, Trans. *Faraday Soc.,* 1969, **65,** 2000.
- 9 A. Deronzier and T. J. Meyer, *Inorg. Chem.,* 1980, **19,** 2912.
- 10 B. P. Sullivan, **W.** J. Dressick, and T. **J.** Meyer, to be published.