Chelate Control in the Rhodium-catalysed Homogeneous Hydrogenation of Chiral Allylic and Homoallylic Alcohols

John M. Brown and Ramachandra G. Naik *Dyson Perrins Laboratory, South Parks Road, Oxford OX7 3QY, U.K.*

Chelate bisphosphine rhodium complexes afford a high degree of stereoselection in the homogeneous hydrogenation of 3-phenylbut-3-en-2-ol and 4-phenylpent-4-en-2-ol, in opposite senses.

The recent surge of interest in acyclic stereoselection¹ has largely been directed towards the selectivity of carboncarbon bond forming reactions with comparatively less emphasis on alternative approaches. It has produced remarkable control in (1,2)-asymmetric induction, but comparatively few good examples of $(1,3)$ or more remote^{2,3} asymmetric inductions exist. We report that the hydrogenation of allylic and homoallylic alcohols occurs with high stereoselectivity with simple readily available catalysts.

3-Phenylbut-3-en-2-01 **(1)** was prepared by the reaction of

1-phenylethenylmagnesium bromide with acetaldehyde [1-
bromo-1-phenylethene, Mg, tetrahydrofuran (THF), $-5^{\circ}C$, MeCHO, 0° C]. Hydrogenation produced a mixture of (S^*, S^*) -erythro- and $(R, *S^*)$ -threo-3-phenylbutan-2-ol $(2)^4$ in which the latter always predominated.⁵ With catalysts derived from triphenylphosphine or **diphenylpyridylphosphine** a 2 : 1 ratio of components was formed, most likely by a pathway requiring olefin addition to a rhodium dihydride complex.⁶ The reactivity of chelate rhodium bisphosphine complexes in catalytic hydrogenation is known to be very dependent on

Table 1. Hydrogenation of the alcohols (1) and (4) with di- or bis-phosphine bicyclo[2.2.1] heptadiene rhodium tetrafluoroborate complexes.

Substrate	Solvent ^a	Procatalyst	$R: S^{\text{b}}$	℅ Iso- merisation
$\bf(1)$	CH ₃ Cl ₃	PPh.	65:35	0
(1)	CH ₃ Cl ₃	$Ph_2P[CH_2]_4PPh_2$	94:6	60
(1)	CH ₂ Cl ₂	$Ph_2P[CH_2L$ PPh ₂	$97:3^{\circ}$	23
$\bf{1}$	CH ₂ Cl ₂	Ph ₂ PICH ₂ LPPh ₂	50:50	44
$[1:0.25NEt_a]$				
(4)	CH ₂ Cl ₂	PPh.	38:62	
$\bf(4)$	MeOH	$Ph_2P[CH_2]_4PPh_2$	67:33	
$\left(4\right)$	CH ₂ Cl ₂	Ph_2P [CH_2] ₄ PPh_2	$82:18^{d}$	
$\left(4\right)$	THF	$Ph2P[CH2]4PPh2$	88:12e	
$\left(4\right)$	CH ₂ Cl ₂	$Ph_2P[CH_2]_5PPh_2$	$38:62^t$	

a Hydrogenations of substrate (1) in methanol were slow and/or unselective. ^b Analysed from the 300 MHz ¹H n.m.r. spectra of moducts in CDCl₃ following catalyst removal on silica:
 $\delta [(R^*, S^*)$ -(2)] 1.25 (H-1) and 1.29 (H-4); $\delta [(S^*, S^*)$ -(2)] 1.13
 $\delta [(R^*, S^*)$ -(2)] 1.25 (H-1) and 1.29 (H-4); $\delta [(S^*, S^*)$ -(2)] 1.13

(H-1) and 1.38 (H-4); $\delta [(R^*,$ or (1.25) in the presence of an equiniblar quantity of NEI₃.

e Unchanged at 0—2 °C. I Hydrogenation follows the 'hydride'

route cf. J. M. Brown, P. A. Chaloner, A. G. Kent, B. A. Murrer,

P. N. Nicholson, D. Parker,

 (9)

the chelate ring-size.⁷ Whilst 5-membered chelate ring complexes are unreactive, 7-membered chelate complexes effect reaction (Table 1) with some accompanying isomerisation to 3-phenylbutan-2-one (3). In aprotic solvents, but not in methanol, selectivity of up to 30:1 in favour of the threoproduct may be obtained. This compares with a maximum selectivity of $4.9:1$ in the hydride reduction of $(3).8$

The homologue 4-phenylpent-4-en-2-ol (4) was prepared from 1-phenylethenylcopper (RLi, $Et₂O$; then CuI, epoxypropane, -80 to 0° C). This was found to be hydrogenated smoothly and quantitatively to a mixture of (R^*, S^*) -(5) and (R^*, R^*) -(5) under all conditions tried, the stereochemical outcome being strongly dependent on the catalyst. When hydrido-rhodium complexes are the primary intermediate then a weak preference for the (R^*, R^*) -diastereomer prevails, but chelate complexes in aprotic solvents favour formation of (R^*, S^*) -(5). Again it is 1,4-bis(diphenylphosphino)butane which leads to the most stereoselective reaction with a predominance of up to 88:12. Since the absolute configuration of (5) was previously unknown, a sample of $(S)-(4)$, $\left[\alpha\right]_{20}^{589}$ +20.55° (c 1.8, Me₂CO), was prepared from optically active epoxypropane and hydrogenated in dichloromethane with (6) as catalyst. The resulting sample of (5) was oxidised to the ketone (7) $(C_5H_5NH^+CrO_3HCl^-$, CH_2Cl_2 , 20 °C, 3 h). The value for $\left[\alpha\right]_{20}^{589}$ of -25.05 (c 3.86, C₆H₆) suggests that the benzyl carbon atom has the R-configuration.¹⁰ The configuration of one sample was further checked by oxidation with sodium hypobromite (0° C, aq. dioxan) giving the acid (8) which was compared with an authentic sample^{10b} having the (R) - $(-)$ -configuration.

Stereoselectivity in the reduction of (1) may be rationalised using a model [Scheme $1(a)$] in which the non-bonded interactions experienced by the methyl group in the transitionstate are minimised. The stereochemical course of the reduction of (4) is *opposite* to that of (1) and here it represents a preference for the methyl group to assume a *pseudo*-equatorial conformation [Scheme 1(b)].

Neither the acetates of (1) and (4) nor the homologue (9) were reduced with appreciable selectivity under our optimum conditions. Further examples are being studied and we merely comment at this stage on the paucity of cases¹¹ where the stereochemical course of homogeneous hydrogenation is controlled by adjacent polar substituents at a chiral centre and its obvious synthetic potential.

We thank S.E.R.C. for financial support and Johnson-Matthey Ltd., for the generous loan of rhodium salts

Scheme 1

Professor J. **E.** Baldwin kindly provided details of unpublished work.

Received, 8th December 1981; Com. 1410

References

- **¹**Recently: **S.** Masamune, **W.** Choy, F. **A. J.** Kerdesky, and B. Imperiali, *J. Am. Chem. SOC.,* **1981, 103, 1566;** D. **A.** Evans and L. R. McGee, *ibid.,* **1981, 103,2876;** D. **A.** Evans, **J. V.** Nelson, **E.** Vogel, and T. R. Taber, *ibid.,* **1981, 103, 3099; A.** I. Meyers and Y. Yamamoto, *ibid.,* **1981,103,4278,** *inter alia.*
- **2 W.** C. Still and K. P. Darst, *J. Am. Chem. SOC.,* **1980, 102, 7385.**
- **3 B. M.** Trost and T. P. Klun, *J. Am. Chem. SOC.,* **1979, 101, 6756;** *ibid.,* **1981, 103, 1864.**
- **4** D. J. Cram, *J. Am. Chem. Soc.,* **1949,71, 3863.**
- **5 J.** Uzawa, **S.** Zushi, Y. Komada, Y. Fukada, **K.** Nishihata, **K.** Unemura, M. Nishio, and **M.** Hirota, *Bull. Chem. SOC. Jpn.,* **1980, 53, 3623.**
- *6* R. R. Schrock and **J. A.** Osborn, *J. Am. Chem. SOC.,* **1976,**
- **98, 2134. 7 J.** C. Paulin, T. P. Dang, and **H. B.** Kagan, *J. Organomet. Chem.,* **1975, 84, 87; G.** Descotes, D. Lafont, D. Sinou, **J.** M. Brown, P. **A.** Chaloner, and D. Parker, *Nouv. J. Chim.,* **1981,5, 167;** W. **S.** Knowles, B. D. Vineyard, M. J. Sabacky, and B. R. Stults, *Fundamental Res. Homogeneous Catalysis,* **1980, 4, 523.**
- **8** M. Cherest and N. Prudent, *Tetrahedron,* **1980, 36, 1599,** and refs. cited therein.
- **9 B.** T. Golding, D. R. Hall, and **S.** Sakrikhar, *J. Chem. SOC., Perkin Trans.* **1, 1973, 1214.**
- **10** (a) T. Hayashi, K. Yamamoto, and M. Kumada, *Tetrahedron Lett.,* **1975,** *3;* (b) **R.** C. Cookson and J. E. Kemp, *Chem. Commun.,* **1971, 385.**
- **¹¹**Hydroxymethyl-bearing tricyclic olefin : **H.** W. Thompson, *J. Am. Chem. SOC.,* **1974,96,6232;** Dehydrovalines: D. H. **G.** Crout, M. Lutstorf, P. J. Morgan, R. M. Adlington, **J. E.** Baldwin, and M. J. Crimmin, *J. Chem. Soc., Chem. Commun.*, **1981, 1175;** Dehydrodipeptides: D. Sinou, D. Lafont, G. Descotes, and A. *G.* Kent, *J. Organomet. Chem.,* **1981, 217, 119;** the unique effect of dioxop complexes in this latter case should be noted.