Synthesis and Characterization of an Unsymmetrically Bonded Tetra hydroborato Ruthenium Hydride Complex

Terry J. Mazanec, John B. Letts, and Devon W. Meek*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, U.S.A.

The complex RuH(η^2 -BH₄)(ttp) [ttp = PhP(CH₂CH₂CH₂PPh₂)₂], obtained by treatment of [RuCl₂(ttp)]_x with excess of sodium tetrahydroborate in refluxing tetrahydrofuran, shows discrete ¹H n.m.r. signals for the Ru-H protons, each of the two Ru-H-B bridging protons, and the two terminal B-H protons at ambient temperature; however, the static BH_{$\overline{4}$} group undergoes proton scrambling at higher temperatures in two distinct steps.

In contrast with studies that generally have shown degenerate proton signals for the BH_4^- group in metal complexes,¹ we have found that the BH_4^- group is static at room temperature in the complex $\text{RuH}(\eta^2-BH_4)(\text{ttp})$ (1), where ttp = PhP- $(CH_2CH_2CH_2PPh_2)_2$. Consequently, the ¹H n.m.r. spectra give discrete signals for all four types of hydrogen atoms in the high-field region, *i.e.,* the metal hydride, each of the two Ru-H-B bridging protons, and the two terminal B-H protons. We also report herein the first example of magnetic coupling between a phosphorus ligand and a bridging proton of the tetrahydroborato ligand in a metal complex. In addition, this $RuH(\eta^2-BH_4)(ttp)$ complex is the first case where two discrete steps have been observed for the fluxional behaviour of a BH_4^- ligand.

Both the elemental analyses and the i.r. spectrum of (1) ^t suggested that the compound was a mixed ruthenium hydride tetrahydroborate complex, rather than the expected dihydride complex $RuH₂(ttp)$. The i.r. spectrum, however, did not provide a definitive assignment about how the $BH₄⁻$ unit was bonded to the metal: v_{max}/cm^{-1} 2390s, 2380s, and 2330s: **^v**(B-Ht); 1180: *6* (B-Ht); 1880m, sharp: **v** (Ru-H) rather than **v** (Ru-H-B) by analogy with other **v** (Ru-H) absorptions in similar complexes,² B-H^b-B absorptions expected in the range $1650-2150$ cm⁻¹ are either very weak or obscured by ttp(Ph) overtone vibrations, and other $BH₄⁻$ i.r. absorptions are indistinguishable from **ttp** absorptions. The deuteriated complex RuD(η^2 -BD₄)(ttp), obtained from [RuCl₂(ttp)]_x and excess of $NabD₄$ shows i.r. absorptions at 1805, 1755, and 1705 cm⁻¹: **ν** (B-D^t); 1060 cm⁻¹: δ (B-D^t); and 1280 cm⁻¹: **v** (Ru-D), but no absorptions that can be assigned unequivocally to the bridging Ru-D-B absorptions.

The ¹H n.m.r spectrum of **(1)** in C_6D_6 showed multiplet patterns typical of the ttp ligand^{3,4} centred at δ 7.3 (25H) and 1.8 (12H) which are assigned to the phenyl and methylene protons, broad absorptions at 5.1 (2H, $v₊$ *ca.* 90 Hz), -5.8 (1H, v_1 *ca.* 85 Hz), and -7.95 (1H, v_1 *ca.* 90 Hz), and a sharp doublet of triplets at -15.6 [1H, ²*J*(P¹-H) 39 Hz, ²*J*(P²-H) 23 Hz]. The high-field region of this spectrum **is** illustrated in Figure l(c). Broad-band decoupling **of** the boron nucleus causes the resonances at δ -5.8 and -7.9 to sharpen somewhat to a broad singlet $(v₊ ca. 25 Hz)$ and a doublet $[v₊ ca.$ 25 Hz, ²J(P-H) 40 Hz], and the resonance at δ 5.1 (v_+ *ca.* 25 **Hz)** to sharpen; boron decoupling has little effect on the pattern at δ -15.6, as illustrated in Figure 1(a). Moreover,

Figure 1. High-field region of the ¹H n.m.r. spectra of RuH(η^2 -
BH₄)(ttp) (1) in C₆D₆: (a) with ¹¹B decoupling; (b) with ³¹P decoupling; (c) with no decoupling.

^pComplex **(1)** was obtained by treatment of [RuCl,(ttp)], with excess of sodium tetrahydroborate in refluxing tetrahydrofuran as yellow microcrystals in **75%** yield.

Figure 2. ¹H N.m.r. (¹¹B-decoupled) spectra of (1) in $[^{2}H_{8}]$ -toluene for the temperature range 230-378 K. Note that the resonance for H^a begins to collapse in the temperature range 338-348 K, whereas the resonance of **Hb** remains. Both **Ha** and **Hb** resonances have collapsed at 378; however, the multiplet resonance for the Ru-H remains sharp throughout the temperature range.

 δ - 5.8 (v_+ *ca.* 40 Hz) and - 7.9 (v_+ *ca.* 35 Hz) to become broad singlets. We conclude from these observations that the resonance at δ 5.1 is due to the two terminal B-H nuclei of the bonded BH₄, and the two resonances at δ -5.8 and -7.9 are due to two nonequivalent Ru-H-B bridges, the one at δ -7.9 being *trans* to the central phosphorus atom of the ttp ligand [indicated by the $^2J(P-H)$ coupling]. The observed trans P-H coupling (40 Hz) is of comparable magnitude to the ² $J(P-H^b)$ values reported for the compound $H_4Ru_4(CO)_{10}$ - $(Ph_2PCH_2CH_2PPh_2)$, in which $^2J(P-H^b)$ (trans) = 28–30 Hz and ${}^{2}J(P-H^{b})$ (cis) ca. 9-18 Hz.⁵ [The cis-couplings in **(1)** are not resolved.]

The proton resonance at δ -15.6 is assigned to the hydrogen that is bonded directly to ruthenium; that hydrogen is *cis* to all three phosphorus atoms of the ttp ligand. This assignment is based on the magnitudes of the $2J(P-H)$ values (23 and 39 Hz), which are closer to the range of $\mathcal{Y}(P-H)$ values reported⁶ for a *cis*-geometry $(6-32 \text{ Hz})$ than for a *trans*geometry (73 Hz).

The structure proposed for **(1)** is a distorted octahedral arrangement around ruthenium with a meridianal arrangement of ttp and with the bidentate $BH₄⁻$ ligand spanning honequivalent sites, i.e., (1). The proposed C_s symmetry of (1) is supported by the $\frac{31P}{H}$ n.m.r. spectrum, since we observe an AB_2 ³¹P{¹H} n.m.r. pattern in benzene [δ (P¹) 34.1 p.p.m., δ (P²) 29.8 p.p.m.; ²J(P-P) 40 Hz]. A very broad resonance centred at -14.2 p.p.m. $(v₁ ca. 2000$ Hz, referenced to $BCI₃$ at 47.0 p.p.m.), was observed in the ¹¹B {¹H } n.m.r. spectrum. The signal was invariant with broad-band decoupling of the phosphorus nuclei. The structure of **(1) is** similar to that proposed by Crabtree for $Ru(H)(BH₄)$ - $(PMePh₂)₃$.

A variable temperature ¹H {¹¹B } n.m.r. study (Figure 2) of $RuH(BH₄)(ttp)$ in $[^{2}H₈]$ toluene showed that the resonances at δ -5.8 and 5.1 (not shown in Figure 2) begin to collapse first, and at 348 K they disappeared into the baseline. **A** further increase of 10 K caused the resonance at δ -7.9 to collapse, but the doublet of triplets at δ -15.6 remained sharp up to 388 K, the safety limit of the solvent. These exchange steps are reversible. The dynamic 1H n.m.r. results are interpreted in terms of a two-step process which causes scrambling of the bridging and terminal $BH₄⁻$ protons. In the lower-temperature step the Ru-H^a bond is broken allowing free rotation about the Ru-H^b-B linkage and

equilibration of H^a and H^c before reforming an Ru-H-B bridge; thus, the BH_4^- group goes from bidentate to monodentate co-ordination. Note that H^b retains its stereochemical integrity in this first step; the presence of this $Ru-H^b-B$ bridge is supported by the retention of the *trans* ${}^{31}P-{}^{1}H$ coupling in the temperature range 338-348 K. The second step equilibrates H^b with H^a and H^c , either by Ru– H^b bond rupture to give the ion pair $[RuH(ttp)]$ ⁺ $[BH₄]$ ⁻ or by a fluxional process in which the Ru-H^b-B bridge breaks, equilibrating H^b and H^c by rotation about the remaining Ru-Ha-B bridge. **A** sequence of these two steps results in complete scrambling of the $BH₄$ protons. The slightly lower energy required to break the Ru-**Ha** bond may reflect the slightly higher trans-labilizing effect of **a** hydride *vs.* a phosphine ligand in octahedral RuII complexes.

Owing to the presence of both Ru-H and doubly bridged Ru-BH4 linkages in **(l),** addition of acid or base in the presence of neutral ligands L produces two different series of products, *i.e.*, monohydride cations of the type $[Ru(H)(L)_{2}(ttp)]^{+}$ $[L = CO, \text{MeCN}, \text{and } P(OMe)_{3}]$ and dihydride neutral complexes of the type $RuH_2(L)(ttp)$ $[L = CO, PPh_3, and$ P(OMe),]. The syntheses, structures, and spectra of these two series of ruthenium hydride complexes will be reported later in a full paper.²

We gratefully acknowledge the loan of $RuCl₃3H₂O$ by Johnson, Matthey Co. Ltd., a John Simon Guggenheim Fellowship to D. **W.** M., and **a** Lubrizol Fellowship to J. B. **L.** for 1981-1982.

Received, 27th October *1981; Corn. 1261*

References

- T. J. Marks and J. R. Kolb, *Chem. Rev.,* 1977, **77,** *263.*
- *5.* **B.** Letts, T. **J.** Mazanec, and D. W. Meek, *J. Am. Chem. SOC.,* submitted for publication.
- R. **J.** Uriarte, T. **J.** Mazanec, K. D. Tau, and D. W. Meek, *Inorg. Chem.,* 1980, **19,** 79.
- **I).** W. Meek and T. **J.** Mazanec, *Acc. Chem Res.,* 1981, **14, 266.**
- **S. 1.** Richter, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1977.
- D. **G.** Holah, **A.** N. Hughes, and B. *C.* Hui, *Can. J. Chem.,* 1976, **54,** *320.*
- R. H. Crabtree and **A. J.** Pearman, *J. Organomet. Chem.,* 1978, **157,** *335.*