Hydrogen-bond Assisted Observation of HCNH ¹H N.M.R. Coupling in *N*-Methylanilines

James H. Clark,*a Jack M. Miller,*b and Sergio Paoneb

^a Department of Chemistry, University of York, Heslington, York Y01 5DD, U.K.

Department of Chemistry, Brock University, St. Catharines, Ontario, Canada L2S 3A1

Proton-proton HCNH coupling in high pK_a *N*-methylanilines can be observed in solutions containing strong hydrogen-bond electron donors.

The NH protons of many secondary amines are labile on the n.m.r. time-scale. Under normal conditions proton-proton H-C-N-H spin-spin coupling can only be observed for those compounds with $pK_a < 3.5^1$ while more basic amines require rigorous drying precautions.^{2,3} The most probable mechanism for water-catalysed hydrogen exchange involves initial formation of N · · · HO H-bonds [reaction (1)] and this leads us

$$H$$

$$R_2NH + H_2O \rightleftharpoons R_2N \rightleftharpoons R_2NH_2 + OH^- \qquad (1)$$
HOH

to believe that the introduction of H-bond electron donors more powerful than amines should scavenge the water molecules, slow the rate of NH exchange, and hence facilitate observations of HCNH ¹H n.m.r. coupling.

The results of introducing a range of H-bond electron donors into benzene solutions of three N-methylanilines (pK_{a} 4.62—5.36) are summarised in Table 1. The variation of pK_{B} limit for observation of coupling correlates well with reported H-bond electron-donor abilities towards OH centres^{4,5} but not with the aqueous basicities of the electron donors.⁴ Fluoride ions are particularly effective and enable coupling to be observed in the highest pK_a anilines. No special drying precautions were required to observe the couplings indicated in Table 1 so that the F-18-crown-6 method⁶ compares very favourably in terms of convenience and efficiency with other methods such as those involving exhaustive drying processes with NaK alloy² or dimethylzinc.³ When the KF-18crown-6-benzene-amine system reagents were dried before use, we observed that coupling is still clearly observed at amine: F^- molar ratios of > 50:1 and H_2O : F^- molar ratios of up to *ca*. 10:1.

We believe that these results lend weight to our hypothesis that the problem of water-catalysed hydrogen exchange inTable 1. Observation of H–C–N–H proton-proton coupling in benzene solutions of N-methylanilines.^a

H-Bond electron donor	<i>N</i> -Methyl- <i>o</i> -toluidine (pK _{&} 4.62)	N-Methyl- aniline (pK _B 4.85)	N-Methyl- p-toluidine (pKa 5.36)
KFb(18-crown-6)c	Yes	Yesd	Yes
PhaPO	Yes	Yes	bre
Ph _a AsO ^t	Yes	bre	No
Me ₂ SO	bre	No	No
Pyridine	br ^{e,g}	No	No
Dimethylformamide	bre	No	No
CHCl ₃	No	No	No

^a A molar ratio of 2 electron donor to 1 amine was used throughout. ^b KF may be replaced by RbF or CsF but not by other nonfluoride salts such as KOAc, KCl, or KI. ^c The ¹H n.m.r. spectrum also shows a peak due to the F--crown complex, the position of which is solvent dependent. ^d Coupling is lost on raising the sample temperature to 350 K although this coalescence temperature is dependent on concentration and the cation so that T_c (CsF) $> T_c$ (RbF) $> T_c$ (KF). ^e Broad, unresolved resonance. ^t Prepared by KMnO₄ oxidation of Ph₃As. ^g Coupling is observed in pure pyridine solution (ref. 1).

hibiting observation of coupling to labile hydrogens may be overcome by control of the H-bonding in the system.

We thank N.A.T.O. for a collaborative research grant.

Received, 7th October 1981; Com. 1185

References

- 1 I. D. Rae, Aust. J. Chem., 1966, 19, 409.
- 2 K. L. Henold, Chem. Commun., 1970, 1340.
- 3 K. P. Shrestha and K. L. Henold, J. Am. Chem. Soc., 1973, 95, 6699.
- 4 R. W. Taft, L. J. Gurka, L. Joris, P. v. R. Schleyer, and J. W. Rakshys, J. Am. Chem. Soc., 1969, 91, 4801.
- 5 J. H. Clark and J. M. Miller, J. Am. Chem. Soc., 1977, 99, 498; J. Emsley, Chem. Soc. Rev., 1980, 91.
- 6 C. L. Liotta and H. P. Harris, J. Am. Chem. Soc., 1974, 96, 2250.