Direct Studies of Reactions of 170-Labelled Cobaloximes by 170 N.M.R. Spectroscopy : **Hydrolysis of 2-Acetoxyethyl(pyridine)cobaloxime and Hydration of Formyl met h yl** (**pyr id i ne) co ba loxi me**

Eirian H. Curzon, Bernard T. Golding," and Ah Kee Wong

Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL, U.K.

Using ¹⁷O n.m.r. spectroscopy to monitor reactions, the hydrolysis of 2-acetyl^{[17}O]oxyethyl(pyridine)-
cobaloxime is shown to proceed via the $B_{AL}1$ mechanism, whilst the hydration of $[^{17}O]$ formylmethyl(pyridine) cobaloxime takes place with *r+ ca.* 19 h in dioxan-aqueous 0.1 mol dm-3 phosphate (pH *6.8)* (3:2) at 50 **"C.**

Wc have studied the hydrolysis **of 2-acetoxyethyl(pyridine)** cobaloxime **(la)** and the hydration of formylmethyl(pyridine) cobaloxime **(lb)** using 170-enriched cobaloximes and 170 be exceptionally difficult.

n.m.r. spectroscopy. The hydrolysis **is** confirmed to be of' the relatively uncommon B_{AT} l type.¹ The hydration is shown to

R *co* (dmgH)a@Y) **(1) a;** R = CH,CH,OCOMe dmgH = monoanion of **b;** R = CH2CH0 dimethylglyoxime **C;** R = CH,CH(OH), py = pyridine

Aqueous chemistry in which oxygen atoms are mobilised can be advantageously studied with 170-labelled substrates in unlabelled water, because of the opportunity for direct monitoring by 170 n.m.r. spectroscopy.2 For optimum application **of** this technique a substrate should be sufficiently enriched *so* that a high concentration of it and long times for data acquisition are avoided. Thus, efficient methods for preparing $[17O]$ -compounds are required. We have described a convenient method for synthesising [¹⁷O]-aldehydes, -ketones, and -alcohols by which all the label in [170]water is transferred to one of these compounds.³ This method has now been applied to the study of some cobaloximes.

N-Ethyl-N-vinylbenzamide was brominated (1 equiv. **of** $Br₂$ in CCl₄; room temp.; 20 min) and then dehydrobrominated (1 equiv. of Et₃N; room temp.; 2 h) to give *N*-(2**bromoviny1)-N-ethylbenzamide,** which was hydrolysed in ether containing 1 equiv. of [170]water **(7-3** atom % 170) and 0⁻⁰⁵ equiv. of HCl (30 h; room temp.).³ The resulting [¹⁷O]bromoethanal was reduced *in situ* with $Zn(BH_4)$ ₂ in ether⁴ **(10** min; room temp.) to afford [170]bromoethanol, b.p. *ca.* 80 "C at 12 mmHg (kugelrohr), 170 n.m.r. (CDCl,) 8 **1-4,** in an overall yield of 27 %. Alkylation of [170]bromoethanol with (pyridine)cobaloxime(I) [generated in de-aerated ethanol by reducing bromo(pyridine)cobaloxime with $1-2$ mol. equiv. of NaBH, at room temp.] gave 2- **[170]hydroxyethyl(pyridine)** cobaloxime (42%), ¹⁷O n.m.r. (CDCl₃) δ 15.6, which was acetylated (Ac_2O in pyridine; room temp.; 24 h) to give 2-acetyl **[170]oxyethyl(pyridine)cobaloxime** (35 %). On incubating 0.02 mol dm⁻³ of this cobaloxime in water-dioxan $(1:2, v/v)$ the ¹⁷O resonance[†] from the alkyl oxygen of the ester gradually declined and was replaced by a resonance from acetate *(cf.* Figure 1). The signals from water and dioxan did not change in intensity and no other signals were apparent. For an experiment performed at 323 K, $k = 5.5 + 0.1 \times$ **s-l.** After **3** half-lives the product, 2-hydroxyethyl- (pyridine)cobaloxime, free of 170, was recovered. In a control experiment, it was found that 0.02 mol dm-3 **of** 2-[170] **hydroxyethyl(pyridine)cobaloxime** did not detectably lose 170 when heated at 323 **K** for **24** h in water-dioxan **(1** : 2) containing 0.02 mol dm⁻³ of acetic acid.

The results obtained are consistent with a mechanism⁵ in which loss of acetate from **2-acetoxyethyl(pyridine)cobaloxime** (i.e. alkyl-oxygen, B_{AL}] fission¹) yields a π -ethene complex of cobaloxime(m), which is either captured by water to give

Figure 1. 170 N.m.r, spectrum **of** aqueous dioxan containing 2-acetyl **[170]~xyethyl(pyridine)cobaloxime** after *65* min **in**cubation at **323 K.**

2-hydroxyethyl(pyridine) cobaloxime or loses ethene to produce **hydroxy(pyridine)cobaloxime.** The relative amounts **of** these cobaloximes were 3:1 according to a ¹H n.m.r. spectrum of material recovered from a hydrolysis by evaporation.

Formylmethyl(pyridine)cobaloxime (1b) and 2,2-dihydroxy**ethyl(pyridine)cobaloxime (lc)** are important model compounds for the corresponding cobalamins, which are possible intermediates in the conversion of ethane-l,2-diol into ethanal catalysed by adenosylcobalamin-dependent diol dehydratase.⁶ **[170]Formylmethyl(pyridine)cobaloxime, 170** n.m.r. (CDCI,) 8 **544,** was obtained by hydrolysing 2,2-diethoxyethyl- (pyridine)cobaloxime with 1 equiv. of [170]water (containing *ca.* **30** atom $\frac{9}{6}$ ¹⁷O and 50 atom $\frac{9}{6}$ ¹⁸O) and 0.05 equiv. of HCl in CH_2Cl_2 (2 h; room temp.). [¹⁷O]Pentanal (31 atom $\frac{9}{6}$ ¹⁷O) was prepared as described.³ Loss of ¹⁷O from these aldehydes, presumably *via* hydration then dehydration,⁷ was monitored by **170** n.m.r. spectroscopy of aqueous solutions. The half-life of [170]pentanal in **0.1** mol dm-3 phosphate buffer (pH **6.8)** was *ca.* 1 min at 278 K. At 323 **K** in aqueous phosphate(pH 6.8)-dioxan (2:3) $k = 1.0 \pm 0.1 \times 10^{-4} \text{ s}^{-1}$ $(\tau_4, 2 \text{ h})$ for loss of ¹⁷O from [¹⁷O]formylmethyl(pyridine) cobaloxime (0.02 mol dm⁻³), presumably *via* [hydroxy-¹⁷O]-**2,2-dihydroxyethyl(pyridine)cobaloxime.** The material recovered from such an experiment, after disappearance of the formyl resonance in the **170** n.m.r. spectrum, was shown to be $> 90\%$ formylmethyl(pyridine)cobaloxime by ¹H n.m.r. spectroscopy, and to contain only ¹⁶O by i.r. spectroscopy.

We have previously observed the lack of reactivity of the aldehyde group in **formylmethyl(pyridine)cobaloxime** to $NaBH₄$ and $LiAlH₄$, although conversion into 2-hydroxyethyl-(pyridine)cobaloxime can be achieved with diborane.* Browng has recently discussed the relatively high pK_a values of carboxymethyl- and carboxyphenyl-cobaloximes and the low reactivity of their esters to alkaline hydrolysis. These properties were explained as a consequence of $\sigma-\pi$ hyperconjugation involving the Co–C σ -bond and the carbonyl group. A similar effect could operate with **formylmethyl(pyridine)cobaloxime,** lowering v_{max} for the carbonyl stretching vibration and rendering its caroonyl carbon relatively unreactive to nucleophilic attack. This interaction is implied by the upfield shift

⁷ The **170** n.m.r. spectra were obtained on a Bruker **WH400** spectrometer operating at **54.24 MHz.** Samples were contained in either 10 or 15 mm diameter n.m.r. tubes and were run non-
spin. No field-frequency lock was used. The spectral width was
40 000 Hz and free induction decays were stored in either 512, 1024, or 4096 data points, depending upon the experiment.
Pulse angles of 90° were used with no delay between successive acquisitions; a typical repetition time was 0-05 s. Low power ¹H decoupling was employed. Temperatures were monitored and held constant ($\pm 1^{\circ}$ C) with a standard Bruker control unit. All free induction decays less than 4 **K** data points were zero filled to either 4 K or 8 K and an exponential multiplication function
was used to enhance the signal-to-noise ratio. Chemical shifts are
reported in p.p.m. relative to internal water at $\delta = 0$. Integrals
were estimated from pe noise ratio and were repeated every 30 min or 1 h for the co-
baloxime aldehyde or ester, and every 10 s for pentanal.

of the formyl oxygen ¹⁷O n.m.r. resonance $(\delta 544)$ compared with that for, *e.g.* pentanal $(\delta 583)$.

Received, 17th August 1981; Corn. 1000

References

- **¹***Cf.* **R. A.** *Y.* Jones, 'Physical and Mechanistic Organic Chemistry,' Cambridge University Press, Cambridge, 1979, ch. **12.**
- **2** W. G. Klemperer, *Angew. Chem., Int. Ed. Engl.,* **1978, 17, 246.**
- **3** B. **T.** Golding and A. K. Wong, *Angew. Chem., Int. Ed. Engl.,* **1981, 20, 89.**
- **4 W.** J. Gender, F. A. Johnson, and D. B. Sloan, J. *Am. Chem. Soc.*, 1960, 82, 6074.
- *5* B. T. Golding, H. L. Holland, U. Horn, and S. Sakrikar, *Angew. Chem., Int. Ed. Engl.,* **1970, 9, 959;** J. W. Espenson and D. M. Wang, *Inorg. Chem.,* **1979, 18, 2853** and references cited therein.
- *6* D. Dolphin, A. R. Banks, W. R. Cullen, A. R. Cutler, and R. B. Silverman, in 'Vitamin B₁₂,' eds. B. Zagalak and W. Friedrich, Walter de Gruyter, Berlin, **1979,** pp. **575-586.**
- P. Greenzaid, **Z.** Luz, and D. Samuel, J. *Am. Chem. SOC.,* **1967, 89, 756; D.** Samuel and B. L. Silver, *Adv. Phys. Org. Chem.,* **1965,** *3,* **123;** H. Dahn, H. P. Schlunke, and J. Temler, *Helv. Chim. Acta.,* **1972,** *55,* **907; R. P.** Bell, *Adv. Phys. Org. Chem.,* **1966, 4, 1.**
- **8** B. T. Golding and U. Horn, unpublished results.
- 9 K. L. Brown, *J. Am. Chem. Soc.*, 1978, 100, 823.