Reaction of $\mathbf{M}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right), \mathbf{M}=\mathrm{Eu}$ or Yb , with Phenylacetylene; Formation of Mixed-valence $\mathrm{Yb}_{3}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}(\mu-\mathrm{C}=\mathrm{CPh})_{4}$ and $\mathrm{Eu}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mu-\mathrm{C}=\mathrm{CPh})_{2}$ (tetrahydrofuran) ${ }_{4}$

James M. Boncella, T. Don Tilley, and Richard A. Andersen*

Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, U.S.A.

Reaction of $\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)$ with $\mathrm{PhC} \equiv \mathrm{CH}$ yields the mixed-valence complex $\mathrm{Yb}_{3}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}(\mu-\mathrm{C} \equiv \mathrm{CPh})_{4}$ though $\mathrm{Eu}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)$ reacts with $\mathrm{PhC} \equiv \mathrm{CH}$ to give the divalent complex $\mathrm{Eu}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mu-\mathrm{C} \equiv \mathrm{CPh})_{2}(\mathrm{thf})_{4}$ (thf = tetrahydrofuran) after crystallization from thf.

The divalent metallocene, $\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)$, is a single-electron-transfer reagent towards transition metal carbonyls and inorganic molecules. ${ }^{1}$ To explore the scope of the electron-transfer properties of this divalent metallocene, we have examined some of its reactions with organic molecules.

The complex, $\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)$, does not react with CO (18 atm, $20^{\circ} \mathrm{C}$) nor with $\mathrm{PhC} \equiv \mathrm{CPh}$ (refluxing toluene), but it does react with $\mathrm{PhC} \equiv \mathrm{CH}\left(3: 4\right.$ molar ratio, toluene, $20^{\circ} \mathrm{C}$) to give red needles from toluene $\left(-10^{\circ} \mathrm{C}, 52 \%\right.$ yield, m.p.
$\left.275-278{ }^{\circ} \mathrm{C}\right)$ of $\mathrm{Yb}_{3}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}(\mathrm{C} \equiv \mathrm{CPh})_{4},{ }^{+}{ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $\left.26^{\circ} \mathrm{C}\right) \delta 3.49\left(\mathrm{~s}, 60 \mathrm{H}, w_{\frac{1}{2}} 25 \mathrm{~Hz}\right), 10.6\left(\mathrm{~s}, 4 \mathrm{H}, w_{2} 20 \mathrm{~Hz}\right), 12.7$ ($\mathrm{s}, 8 \mathrm{H}, w_{\frac{1}{2}} 20 \mathrm{~Hz}$), and $25.5\left(\mathrm{~s}, 8 \mathrm{H}\right.$, $w_{\frac{1}{2}} 20 \mathrm{~Hz}$); i.r. (Nujol) $v(\mathrm{C} \equiv \mathrm{C}) 2040 \mathrm{~cm}^{-1}$.

An ORTEP diagram is shown in Figure 1. The crystal used in the X-ray study was grown from benzene solution and the

[^0]

Figure 1. ORTEP Diagram of $\mathrm{Yb}_{3}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}(\mu-\mathrm{C} \equiv \mathrm{CPh})_{4}$. $\mathrm{Cp}=\mathrm{C}_{5} \mathrm{Me}_{5}$. Some distances (\AA) and angles $\left(^{\circ}\right)$ are: Yb -centroid (av.) 2.33; $\mathrm{C}=\mathrm{C}$ (av.) 1.22(1); $\mathrm{C}-\mathrm{C}(\mathrm{Ph})$ (av.) $1.47(1) ; \mathrm{Yb}(1)-\mathrm{C}(1)-$ $\mathrm{Yb}(3) \quad 97.6(2) ; \quad \mathrm{Yb}(1)-\mathrm{C}(9)-\mathrm{Yb}(3) \quad 95.6(2) ; \quad \mathrm{Yb}(2)-\mathrm{C}(17)-\mathrm{Yb}(3)$ $96.8(2) ; \mathrm{Yb}(2)-\mathrm{C}(25)-\mathrm{Yb}(3) \quad 95.9(2) ; \mathrm{C}(1)-\mathrm{Yb}(1)-\mathrm{C}(9) 86.0(2)$; $\mathrm{C}(1)-\mathrm{Yb}(3)-\mathrm{C}(9) 80.3(2) ; \mathrm{C}(17)-\mathrm{Yb}(3)-\mathrm{C}(25) 81.4(2) ; \mathrm{C}(17)-\mathrm{Yb}(2)-$ $\mathrm{C}(25) \quad 85.9(2) ; \quad \mathrm{C}(1)-\mathrm{Yb}(3)-\mathrm{C}(25) \quad 113.9(2) ; \quad \mathrm{C}(9)-\mathrm{Yb}(3)-\mathrm{C}(17)$ 113.6(2).
complex contains a molecule of benzene of solvation. Crystal data: $\mathrm{C}_{78} \mathrm{H}_{86} \mathrm{Yb}_{3}, M=1548.68$, monoclinic, space group $P 2_{1} / c, \quad a=18.388(3), \quad b=13.598(1), \quad c=26.852(3) \quad \AA$, $\beta=90.92(1)^{\circ}, U=6712.9 \AA^{3}, D_{\mathrm{c}}=1.526 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo- K_{α} radiation, $\lambda=0.71073 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=41.73 \mathrm{~cm}^{-1}$. The structure was solved by a combination of MULTAN and Fourier methods and refined using 5715 unique reflections [$F^{2}>3 \sigma\left(F^{2}\right)$] measured on a CAD4 diffractometer ($2 \theta_{\max }$ 45°). The current R value is 0.0327 . \ddagger
The averaged $\mathrm{Yb}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ bond length is $2.61(2) \AA$. This value is in the range found for related trivalent $\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}$ complexes whose co-ordination numbers are identical to the terminal ytterbium atoms in the phenylacetylide (2.57-2.65 $\AA)^{1,2}$ and significantly shorter than that found, $2.742(7) \AA$, in the divalent complex of identical co-ordination number of $\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}$ (pyridine $)_{2} .{ }^{3}$ The averaged $\mathrm{Yb}(1,2)-\mathrm{C}(\mathrm{C} \equiv \mathrm{CPh})$ bond length is $2.40(2) \AA$ and the averaged $\mathrm{Yb}(3)-\mathrm{C}(\mathrm{C} \equiv \mathrm{CPh})$ bond length is $2.52(1) \AA$. The bond length data support the idea that $\mathrm{Yb}(1,2)$ are trivalent and $\mathrm{Yb}(3)$ is divalent, since Shannon suggests that the radius of $\mathrm{Yb}^{\text {iII }}$ is $0.16 \AA$ smaller than $\mathrm{Yb}^{11}{ }^{4}$ Thus, $\mathrm{Yb}_{3}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}(\mu-\mathrm{C} \equiv \mathrm{CPh})_{4}$ is a $\mathrm{Yb}^{\text {m, }, \mathrm{IIII}}$ mixedvalence complex of idealized $D_{2 d}$ symmetry. Magnetic susceptibility studies, $\mu_{\text {eff }}\left(5-30 \mathrm{~K}\right.$, per $\left.\mathrm{Yb}^{\text {III }}\right)=3.58 \pm 0.04 \mu_{\mathrm{B}}$ and $\mu_{\text {eff }}\left(90-300 \mathrm{~K}\right.$, per $\left.\mathrm{Yb}^{\text {III }}\right)=4.53 \pm 0.01 \mu_{\mathrm{B}}$, show that the complex is a class I or trapped valence complex, i.e., there is no electron exchange between the $\mathrm{Yb}^{\text {III }}$ centres. ${ }^{5}$
The co-ordination number of the central ytterbium atom is four and the geometry is distorted tetrahedral. The dihedral angle formed by the intersection of the planes defined by $\mathrm{Yb}(3) \mathrm{C}(1) \mathrm{C}(9)$ and $\mathrm{Yb}(3) \mathrm{C}(17) \mathrm{C}(25)$ is 65.4°. A higher

[^1]

Figure 2. ORTEP Diagram of $\mathrm{Eu}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mu-\mathrm{C} \equiv \mathrm{CPh})_{2}(\text { thf })_{4}$. Some distances (\AA) and angles $\left({ }^{\circ}\right)$ are: Eu-centroid 2.55; C=C 1.188(8); C-C (Ph) $1.44(1)$; centroid- $\mathrm{Eu}-\mathrm{C}(\mathrm{C} \equiv \mathrm{CPh})$ (av.) 113.2 ; centroid-Eu-O (av.) 112.4; $\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{C}\left(1^{\prime}\right) 86.6(2) ; \mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{C}(1) 80.4(2)$; $\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{C}(1) 135.5(2) ; \mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{C}\left(1^{\prime}\right) 132.2(2) ; \mathrm{C}(1)-\mathrm{Eu}(1)-$ $\mathrm{C}\left(1^{\prime}\right) 84.6(2) ; \mathrm{Eu}(1)-\mathrm{C}(1)-\mathrm{Eu}\left(1^{\prime}\right) 95.4(2)$.
co-ordination number of $\mathrm{Yb}(3)$, created by interaction with the β-carbon atoms of the bridging phenylacetylide ligand [the $\mathrm{Yb}(3)-\mathrm{C}(2,10,18,26)$ distances vary from $3.01-3.26 \AA]$, is prevented by the close approach of one of the ortho-carbon atoms of each phenyl ring to the methyl carbon atoms of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand. This contact distance ranges from 3.26-3.60 \AA. The compact geometry produces considerable asymmetry in the bridging phenylacetylide carbon angles; the averaged $\mathrm{Yb}(3)-\mathrm{C}(1,9,17,25)-\mathrm{C}(2,10,18,26) \quad$ and $\quad \mathrm{Yb}(1,2)-$ $\mathrm{C}(1,9,17,25)-\mathrm{C}(2,10,18,26)$ angles are $107(4)$ and $156(3)^{\circ}$, respectively.

Reaction of the divalent europium metallocene, $\mathrm{Eu}\left(\mathrm{C}_{5}-\right.$ $\left.\mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)^{6}$, with $\mathrm{PhC} \equiv \mathrm{CH}$ takes a different course, since the product $\mathrm{Eu}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})_{2}(\mathrm{thf})_{4} \dagger($ thf $=$ tetrahydrofuran) (orange prisms from thf, $-10^{\circ} \mathrm{C}, 47 \%$ yield, $v(\mathrm{C} \equiv \mathrm{C})$ $2025 \mathrm{~cm}^{-1}$) is based upon divalent europium, and the acetylene is acting as a protic acid only. An ORTEP diagram is shown in Figure 2. Crystal data: $\mathrm{C}_{52} \mathrm{H}_{72} \mathrm{Eu}_{2} \mathrm{O}_{4}, M=1065.07$, orthorhombic, space group $P b c a, \quad a=17.251(3)$, $b=15.445(2), c=18.732(2) \AA, U=4991.1 \AA^{3}{ }^{3} Z=4$, $D_{\mathrm{c}}=1.417 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo- K_{α} radiation, $\lambda=0.71073 \AA, \mu(\mathrm{Mo}-$ $\left.K_{\alpha}\right)=25.33 \mathrm{~cm}^{-1}$. The structure was solved by a combination of Patterson and Fourier methods and refined using 1744 unique reflections [$F^{2}>3 \sigma\left(F^{2}\right)$] measured on a Nonius CAD4 diffractometer $\left(2 \theta_{\max } 45^{\circ}\right)$. The current R value is 0.0264. \ddagger

The averaged $\mathrm{Eu}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ distance is $2.82(2) \AA$, similar to that found $[2.795(7) \AA]$ in $\mathrm{Eu}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right) .{ }^{6}$ The averaged $\mathrm{Eu}-\mathrm{O}$ (thf) distance of 2.62(1) \AA is similar to that [2.594(4) \AA] found in $\mathrm{Eu}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)$. The bridging phenylacetylide is slightly asymmetric; the $\mathrm{Eu}-\mathrm{C}\left(1,1^{\prime}\right)$ distances of 2.709(7) and $2.702(7) \AA$ are identical though the $\mathrm{Eu}(1) \mathrm{C}(1) \mathrm{C}(2)$ and $\mathrm{Eu}\left(1^{\prime}\right) \mathrm{C}(1) \mathrm{C}(2)$ angles are $129.1(6)$ and $135.5(6)^{\circ}$, respectively.

The geometry of the bridging phenylacetylide groups in the divalent and mixed-valence derivatives is similar to that found in the trivalent samarium complex, $\mathrm{Sm}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{4}{ }^{-}$ $(\mu-\mathrm{C} \equiv \mathrm{CPh})_{2} .{ }^{7}$

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences

Division of the US Department of Energy. We thank Dr. F. J. Hollander, staff crystallographer of the University of California, Berkeley X-ray facility (CHEXRAY), which was set up by a departmental NSF grant, for his help with the crystallography.
Received, 30th January 1984; Com. 133

References

1 T. D. Tilley and R. A. Andersen, J. Chem. Soc., Chem. Commun., 1981, 985 ; J. Am. Chem. Soc., 1982, 104, 1772; T. D. Tilley, R. A. Andersen, and A. Zalkin, Inorg. Chem., 1983, 22, 856.

2 T. D. Tilley, R. A. Andersen, A. Zalkin, and D. H. Templeton, Inorg. Chem., 1982, 21, 2644.
3 T. D. Tilley, R. A. Andersen, B. Spencer, and A. Zalkin, Inorg. Chem., 1982, 21, 2647.
4 R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751.
5 M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247; G. C. Allen and N. S. Hush, Prog. Inorg. Chem., 1967, 8, 357, 391; 'Mixed-Valence Compounds,' ed. D. B. Brown, Reidel Publishing Company, Boston, 1980.
6 P. L. Watson, R. L. Harlow, J. F. Whitney, T. D. Tilley, and R. A. Andersen, Organometallics, submitted for publication.
7 W. J. Evans, I. Bloom, W. E. Hunter, and J. L. Atwood, Organometallics, 1983, 2, 709.

[^0]: \dagger All new compounds gave satisfactory elemental analyses.

[^1]: \ddagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW . Any request should be accompanied by the full literature citation for this communication.

