On–Off-switched Crown Ether–Metal Ion Complexation by Photoinduced Intramolecular Ammonium Group 'Tail-biting'

Seiji Shinkai,* Midori Ishihara, Kaori Ueda, and Osamu Manabe*

Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852, Japan

A new photoresponsive crown ether with an ammonium-group tail was synthesised in which the ion-binding ability changes in response to photoirradiation because of competitive intramolecular 'tail-biting' in the *cis*-form produced by photoisomerisation.

Cations are known to be transported through membranes by synthetic macrocyclic polyethers as well as by antibiotics.^{1—3} In particular, polyether antibiotics such as nigericin and monensin interconvert between the cyclic and acyclic forms in the membrane phase, a property which is believed to be responsible for rapid ion-transport through the membranes. This phenomenon suggests that reversible interconversion between two states can be responsible for the high efficiency of carrier molecules. Azobenzene exhibits photoinduced reversible *cis-trans* isomerism. The geometrical change involved is so large that it has frequently been employed as a photoantenna for photocontrol of functional molecules such as crown ethers, ⁴–⁸ cyclodextrins, ⁹ and polymers.^{10,11}

Recently, Nakatsuji *et al.*¹² reported a new synthetic ionophore having a crown ether ring and an attached ammonium ion capable of intramolecular complexation. Herein we report on a new photoresponsive crown ether $(1H^+)$ with an ammonium-group tail. This 'tail-biting' crown ether is designed so that the crown ether ring can bind intramolecularly to the ammonium group only when it is photoisomerised to the *cis*-form. The Corey–Pauling–Koltun (CPK) model of $(1H^+)$ shows that the hexamethylene spacer

group is of sufficient length for the ammonium group to reach the crown ether ring plane in cis-(1H⁺). We have found that (i) the ion affinity of (1H⁺) is markedly reduced by u.v. irradiation, (ii) the rate of the thermal isomerisation of cis-(1H⁺) to trans-(1H⁺) is slower than that of the free amino analogue [cis-(1) \rightarrow trans-(1)], and (iii) the rate is accelerated by addition of K⁺ ions.

trans-(1) was prepared by condensation of 4'-(4"-hydroxyphenylazo)benzo-18-crown-6 and N-(6-bromo-hexyl)phthalimide followed by treatment with hydrazine [*trans*-(1H⁺)Cl⁻ m.p. 180–181.5 °C]. The product gave satisfactory elemental analyses and mass (M^+ 531), n.m.r., and i.r. spectra.

The photoisomerisation was carried out using a 500 W high-pressure Hg lamp with a colour glass filter $(330 < \lambda < 380 \text{ nm})$. In *o*-dichlorobenzene (containing 20 vol% n-butyl alcohol), the isomerisation reached a photostationary state after 30 s [*cis*-form, (1) 72.5%, (1H⁺) 79.6%]. The initial spectra of the *trans*-forms [λ_{max} , (1) 370 nm, (1H⁺) 368 nm] were quantitatively regenerated thermally or by irradiation with a 200 W tungsten lamp.

The first-order rate constants (k_1) for the thermal *cis-trans* isomerisation were determined in o-dichlorobenzene (containing 20 vol% n-butyl alcohol) at 30 °C by following the increase in the absorption bands of the trans-forms. We found that k_1 for cis-(1H⁺) (1.59 × 10⁻⁵ s⁻¹) is significantly smaller than that for cis-(1) $(2.77 \times 10^{-5} \text{ s}^{-1})$. Figure 1 shows the influence of added K+ ion (as potassium dodecanoate) on the isomerisation rates. It can be seen that k_1 for cis-(1H⁺) increases with increasing K⁺ concentration and reaches a maximum value $(3.1 \times 10^{-5} \text{ s}^{-1})$ at [K⁺] ca. 10^{-4} M . The thermal isomerisation can be suppressed when interaction between azo-substituents exists.⁶ The K+-dependent rate acceleration is due to competitive complexation of K⁺ to the crown ether ring. Therefore, our results can be rationalised in terms of intramolecular complexation of the terminal ammonium group with the crown ether ring in cis-(1H+). Interestingly, k_1 for cis-(1) also increased, although to a smaller extent, with increasing K⁺ concentration. The rate constants of simple *cis*-azobenzenes were unaffected by the addition of

Figure 1. First-order rate constants (k_1) for the thermal *cis-trans* isomerisation plotted against the K⁺ concentration; 30 °C, *o*-dichlorobenzene:n-butyl alcohol 8:2 v/v, [(1H⁺)] or [(1)] 1.14×10^{-5} M. $\oplus = cis$ -(1); $\bigcirc = cis$ -(1H⁺).

Table 1. Extraction of alkali toluene-p-sulphonates (M^+Ts^-) with $(1H^+)$ and (1) at 30 $^\circ C.^a$

Metal ion	10^4 . [M ⁺] in the organic phase			
	trans-(1H+)	<i>cis</i> -(1H ⁺) ^b	trans-(1) ^c	<i>cis</i> -(1) ^{b,c}
Li+	0.09	0.01	0.12	0.03
K+	0.22	0.04	1.16	0.39
Rb+	0.30	0.17	0.66	0.43
Cs+	0.38	0.24	0.60	0.63

^a Aqueous phase (3 ml): $[M^+Ts^-] 0.0102 \text{ M}$, pH 4.7 with 10 mM phosphate. Organic phase (*o*-dichlorobenzene:n-butyl alcohol 45:55 v/v, 3 ml): [(1)] or $[(1H^+)] 1.88 \times 10^{-4} \text{ M}$. ^b 82.9% *cis*-Form by irradiation with a 500 W high-pressure Hg lamp (330 < λ < 380 nm) for 10 min. ^c Aqueous phase: $[M^+Ts^-] 0.0102 \text{ M}$, [MOH] 10 mM.

such low concentrations of K^+ ion. The result suggests that the amino group in *cis*-(1) also interacts with the crown ether ring. In fact, there are many precedents that amino groups form stable complexes with 18-crown-6 and its analogues.¹³

The photoresponsive ionophoric properties of (1) were evaluated through solvent extraction of alkali toluene-*p*sulphonates. Usually, the extractions can be conveniently determined by spectroscopic measurement of the counteranion (A^-) extracted into the organic phase. However, this method was unsuitable in the present system because $A^$ could be extracted not only as M^+A^- but also as $(1H^+)A^-$. We thus measured the concentration of M^+ in the organic phase by atomic absorption spectroscopy. While this method has merit in that the metal concentrations are obtained directly, practically it is somewhat inconvenient and the concentration of Na⁺ could not be determined because of subtle changes in the Na⁺ background owing to the glassware used.⁺ The results are summarised in Table 1. Under the extraction conditions, leaks of (1) or (1H⁺) into the aqueous phase could be neglected.

Examination of Table 1 reveals that (i) trans-(1) exhibits the highest affinity for K⁺, as expected for an 18-crown-6 analogue, (ii) the extracted ion concentrations decrease in the order trans-(1) > trans-(1H⁺) > cis-(1H⁺), and (iii) the most conspicuous change is seen for K⁺ ion where cis-(1H⁺) shows very small ion affinity. The lower extraction ability of trans-(1H⁺) relative to trans-(1) can be attributed to intermolecular complexation of the ammonium group in trans-(1H⁺), but the further decrease observed in cis-(1H⁺) relative to trans-(1H⁺) could be rationalised in terms of intramolecular complexation of the ammonium tail by the crown ether ring. In other words, the intramolecular-complexed ammoniumgroup tail in the cis-configuration is capable of ejecting K⁺ ion from the crown ether ring.

The less prominent changes with Rb^+ and Cs^+ relative to K^+ may be explained as follows: K^+ (best-fit metal ion) nests in the benzo-18-crown-6 ring while the larger Rb^+ and Cs^+ perch on its edge, so that the interaction with Rb^+ and Cs^+ would be less affected by the ammonium group bound (probably) to the opposite side of the crown ether ring.

[†] We attempted solvent extraction into quartz vessels but could not stabilise the background to a satisfactory level.

S. S. thanks the Ministry of Education of Japan for a Grant-in-aid for Scientific Research.

Received, 6th February 1984; Com. 154

References

- 1 Yu. A. Ovchinnikov, V. T. Ivanov, and A. M. Shrob, 'Membrane Active Complexones,' Elsevier, Amsterdam, 1974.
- 2 E. M. Choy, D. F. Evans, and E. L. Cussler, J. Am. Chem. Soc., 1974, 96, 7085.
- 3 E. L. Cussler, Am. Inst. Chem. Eng. J., 1971, 71, 1300.
- 4 H. Bouas-Laurent, A. Castellan, and J.-P. Desvergne, *Pure Appl. Chem.*, 1980, **52**, 2633.
- 5 S. Shinkai, T. Ogawa, Y. Kusano, and O. Manabe, *Tetrahedron Lett.*, 1979, 4569; S. Shinkai, T. Nakaji, T. Ogawa, and O. Manabe, *J. Am. Chem. Soc.*, 1980, **102**, 5860.
- 6 S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, and O. Manabe, J. Am. Chem. Soc., 1981, **103**, 111.
- 7 I. Yamashita, M. Fujii, T. Kaneda, S. Misumi, and T. Otsubo, *Tetrahedron Lett.*, 1980, 541.
- 8 N. Shiga, M. Takagi, and K. Ueno, Chem. Lett., 1980, 1201.
- 9 A. Ueno, H. Yoshimura, R. Saka, and T. Osa, J. Am. Chem. Soc., 1979, 101, 2779.
- 10 M. Irie and K. Hayashi, J. Macromol. Sci., Chem., 1979, A13, 511.
- 11 C. D. Eisenbach, Makromol. Chem., 1978, 179, 2489.
- 12 Y. Nakatsuji, H. Kobayashi, and M. Okahara, J. Chem. Soc., Chem. Commun., 1983, 800.
- 13 F. Vögtle, H. Sieger, and W. M. Muller, 'Host Guest Complex Chemistry I,' Springer-Verlag, Berlin, 1981, p. 107.