Novel Cyclopenta[*c*]benzofuran Intermediates for the Synthesis of Acorane–Alaskane Sesquiterpenes: Total Synthesis of (\pm) - β -Acorenol and (\pm) -Acorenone

Chuzo Iwata,* Shizuo Nakamura, Yasutaka Shinoo, Takafumi Fusaka, Michie Kishimoto, Hidekazu Uetsuji, Naoyoshi Maezaki, and Tetsuaki Tanaka

Faculty of Pharmaceutical Sciences, Osaka University, 1–6 Yamada-oka, Suita, Osaka 565, Japan

Cyclopenta[c]benzofuran derivatives (5a) and (5b) were synthesized from spirodienone esters (6a) and (6b), respectively, and the utility of these intermediates in acorane–alaskane sesquiterpene synthesis is illustrated by their conversion into (\pm) - β -acorenol (4a) and (\pm) -acorenone (1).

The acorane–alaskane family is a large group of sesquiterpenes having the spiro[4.5]decane skeleton.¹ This family is important as members are intermediates in terpene biogenesis and constituents of essential oils. Although synthetic studies of this family, for example acorenone (1) and acorenone B (2), have been reported,² only two groups have reported the synthesis of the compounds bearing tertiary hydroxy groups, *e.g.*, α - (3) and β -acorenol (4a).^{2c,3} We now present a new, flexible synthetic route to this family using the reductive fission of the novel cyclopenta[c]benzofuran derivatives (5a) and (5b).

The *trans*- (6a) and *cis*-spirodienone esters (6b)⁴ were treated with methyl-lithium (5 equiv.) to give diols (7a) and (7b) which afforded tricyclic dienes (5a) and (5b) by treatment with Lewis acids [SiO₂ for (7a) and Mg(ClO₄)₂ for (7b)] in 35 and 90% yields, respectively.[†] The A-c ring junction is *cis*, by

⁺ Selected spectral data. (5a): ν_{max}. 1670 cm⁻¹; $λ_{max}$. 259 nm; δ 0.87 (3 H, d, J 6.5 Hz, 1-Me), 1.10, 1.13 (6 H, 2 × s, 4-Me₂), 1.77 (6 H, s, 7-Me), 5.40 (1 H, m, 6-H), 5.5-5.8 (2 H, AB q, 8- and 9-H); M+ m/z 218. (5b): v_{max} 1675 cm⁻¹; λ_{max} 259 nm; δ 0.76 (3 H, d, J 6.0 Hz, 1-Me), 1.09, 1.12 (6 H, $2 \times s$, 4-Me₂), 1.78 (3 H, s, 7-Me), 4.02 (1 H, br. d, J 5 Hz, 5a-H), 5.3-5.6 (1 H, m, 6-H), 5.46 (1 H, d, J 9.5 Hz, 9-H), 5.71 (1 H, dd, J 9.5 and 1 Hz, 8-H); M⁺ m/z 218. (4b): v_{max} 3440 cm⁻¹; δ 0.92 (3 H, d, J 7 Hz, 4-Me), 1.18, 1.23 (6 H, 2 × s, CMe_2OH), 1.62 (3 H, br. s, 8-Me), 5.21 (1 H, m, 7-H); $M^+ - H_2Om/z$ 204. (9), v_{max} 3620 and 3575 cm⁻¹; δ 0.94 (3 H, d, J 6.3 Hz, 4-Me), 0.96 (3 H, d, J 6.5 Hz, 8-Me), 1.13, 1.22 (6 H, 2 × s, CMe₂OH), 5.11, 5.44 (2 H, 2 × br. d, J 10 Hz, 6- and 7-H); M^+ m/z 222. (11): v_{max} . 3400 cm⁻¹; δ 0.93 (3 H, d, J 6.3 Hz, 4-Me), 1.16, 1.19 (6 H, 2 × s, CMe₂OH), 3.55 (1 H, br. d, J 5.5 Hz, 6-H), 5.43 (1 H, m, 7-H); M^+ – HBr m/z 220. (8b): v_{max} 3070, 3010, 1640, and 895 cm⁻¹; δ 0.95 (3 H, d, J 6 Hz, 4-Me), 1.59 (6 H, br. s, CMe=CH₂ and 8-Me), 4.68, 4.77 (2 H, 2 × br. s, C=CH₂), 5.24 (1 H, m, 7-H); M^+ m/z 204.

considering the reaction mechanism and the coupling constant of the allylic methine proton (5a-H).⁵ The J value (5 Hz) of the 5a-H of (5b) shows that this proton is quasi-equatorial. If the A-c rings fusion was *trans*, this proton could only be quasi-axial. Although the J value of this proton in (5a) is uncertain, the A-c ring fusion would be expected to be cis as in (**5b**).

The reductive fission of the allylic ether bond and the 1,4-reduction of the conjugated diene of (5a) with lithium (20 equiv.) in liquid ammonia containing t-butyl alcohol at -40 °C afforded stereoselectively (\pm) - β -acorenol (4a) in 81% yield and the dehydration of (4a) by a known method⁶ gave (\pm) - β -acoradiene (8a).

Reduction of compound (5b) under the same conditions gave 4-epi- β -acorenol (4b), the spiro-alkene (9), \dagger and the perhydro compound (10) in 23, 34, and 43% yields, respectively. The conditions for the reduction of (5b) were varied (Li, Na, K, and Ca; -20, -33, -40, and -60 °C), but the yields of (4b) were always in the range 20-25%, and under certain conditions [e.g., K (20 equiv.), -33 °C] the spiroalkene (9) was the major product (54%). Bromination of followed by dehydrobromination with 1,8-di-(9) azabicyclo[5.4.0]undec-7-ene afforded the allylic bromide (11) in 63% yield.[†] Attempted reductive debromination of (11) under various conditions failed. Further dehydrobromination (NaI-pyridine-dimethylformamide) of (11) afforded the dienes (12) $[\lambda_{max} 269 \text{ nm}; M^+ m/z 220]$ and (13) $[\lambda_{max} 235 \text{ nm}; M^+ m/z 220]$ in 32 and 27% yields, respectively. Metal-ammonia reduction of (13) afforded 4-epi-\beta-acorenol (4b) in 90% yield, while unexpectedly the same reduction of (12) afforded mainly compound (9).

Dehydration (Al₂O₃-pyridine, 200 °C) of (**4b**) gave 4-*epi*- β acoradiene (8b) in 78% yield.[†] Selective reduction (Li-EtNH₂, room temp.) of the terminal olefin⁷ of (8b) afforded a mono olefin (14) (100%), $[\delta 5.27 (1 \text{ H}, \text{m}, 7-\text{H}); M^+ m/z 206]$ which was oxidized with selenium dioxide in ethanol to give (\pm) -acorenone (1)⁸ in 75% yield.

We are grateful to Professor B. Tomita (University of Tokyo) and Professor W. Oppolzer (Université de Genève) for providing spectral data of authentic β-acorenol and β -acoradiene.

Received, 19th March 1984; Com. 367

References

- 1 J. A. Marshall, St. F. Brady, and N. H. Andersen, Fortschr. Chem. Org. Naturst., 1974, 31, 283.
- 2 (a) H. Wolf and M. Kolleck, Tetrahedron Lett., 1975, 451; H. Wolf, M. Kolleck, and W. Rascher, Chem. Ber., 1976, 109, 2805; (b) B. M. Trost, K. Hiroi, and N. Holy, J. Am. Chem. Soc., 1975, 97, 5873; (c) W. Oppolzer and K. K. Mahalanabis, Tetrahedron Lett., 1975, 3411; W. Oppolzer, K. K. Mahalanabis, and K. Bättig, Helv. Chim. Acta, 1977, 60, 2388; (d) J. F. Ruppert, M. A. Avery, and J. D. White, J. Chem. Soc., Chem. Commun., 1976, 978; J. D. White, J. F. Ruppert, M. A. Avery, S. Torii, and J. Nokami, J. Am. Chem. Soc., 1981, 103, 1813; (e) G. L. Lange, W. J. Orrom, and D. J. Wallace, Tetrahedron Lett., 1977, 4479; G. L. Lange, E. E. Neidert, W. J. Orrom, and D. J. Wallace, Can. J. Chem., 1978, 56, 1628; (f) M. Pesaro and J.-P. Bachmann, J. Chem. Soc., Chem. Commun., 1978, 203; (g) M. F. Semmelhack and A. Yamashita, J. Am. Chem. Soc., 1980, 102, 5924; (h) S. W. Baldwin and J. E. Fredericks, Tetrahedron Lett., 1982, 23, 1235.
- 3 I. G. Guest, C. R. Hughes, R. Ramage, and A. Sattar, J. Chem. Soc., Chem. Commun., 1973, 526.
- 4 E. J. Corey, N. N. Girotra, and C. T. Mathew, J. Am. Chem. Soc., 1969, 91, 1557; C. Iwata, T. Tanaka, T. Fusaka, and N. Maezaki, Chem. Pharm. Bull., 1984, 32, 447.
- 5 E. W. Garbisch, Jr., J. Am. Chem. Soc., 1964, **86**, 5561. 6 B. Tomita and Y. Hirose, *Tetrahedron Lett.*, 1970, 143; W. Oppolzer, Helv. Chim. Acta, 1973, 56, 1812; E. von Rudloff, Can. J. Chem., 1961, **39**, 1860.
- 7 H. Greenfield, R. A. Friedel, and M. Orchin, J. Am. Chem. Soc., 1954, 76, 1258; R. A. Benkeser, R. E. Robinson, D. M. Sauve, and O. H. Thomas, ibid., 1955, 77, 3230; R. A. Benkeser, M. L. Burrous, J. J. Hazdra, and E. M. Kaiser, J. Org. Chem., 1963, 28, 1094
- 8 W. Rascher and H. Wolf, Tetrahedron, 1977, 33, 575.