Stabilization of Parent Phosphinous Acid and Some of its Derivatives by P-Complexation with Tungsten Pentacarbonyl

François Mercier and François Mathey*

Laboratoire CNRS-SNPE, 2-8 rue Henry Dunant, 94320 Thiais, France

A stable phosphinous acid complex, $H_2P(OH)W(CO)_5$, was prepared by LiAlH₄ reduction followed by acid hydrolysis of the corresponding diethylaminodichlorophosphine complex.

Phosphinous acid H₂POH, the phosphorus analogue of hydroxylamine, is still unknown today. According to recent theoretical calculations,¹ it is slightly lower in energy than the isomeric phosphine oxide H₃PO. Thus, its postulated intermediacy in the reaction of POBr₃ with LiH at low temperature giving $(PH)_n^2$ appears very likely but its stability is obviously very low. Nevertheless, some of its derivatives have been either characterized (*e.g.* PH₂I in the reaction of PI₃ with PH₃³) or isolated in the pure state [*e.g.* (Me₃Si)₂NPH₂⁴]. On the other hand, P-complexation seems to be a very powerful tool for stabilizing this kind of compound as demonstrated by the isolation of stable complexes like (ROPH₂)BH₃² and [RP(H)A]W(CO)₅, A = OH, NH₂, Cl, Br, I.⁵ In view of these results, the synthesis of H₂POH was attempted in the co-ordination sphere of tungsten.

The diethylaminodichlorophosphine complex (1)

 $(\delta^{31}P + 120 \text{ p.p.m. in } C_6D_6)$ was first synthesized by allowing a slight excess (*ca.* 20%) of the corresponding free phosphine to react with W(CO)₅(THF) (THF = tetrahydrofuran) at room temperature and purified by chromatography on a short silica gel column with diethyl ether (72% yield). Complex (1) was reduced using a large excess of LiAlH₄ in Et₂O at room temperature with vigorous stirring. The unreacted metal hydride was destroyed by adding acrylonitrile to the reaction mixture. The *N*,*N*-diethyl phosphinamide complex (2) was recovered in the pure state by simply filtering and evaporating the Et₂O solution (60% yield).

Methanolysis of (2) was performed in the presence of acetic acid. After methanolysis, the crude organic residue was recrystalized in hexane to afford the *O*-methyl phosphinite complex (3) as stable white crystals (m.p. 62°C). Similarly, the hydrolysis of (2) was promoted by acetic acid. The crude

Table 1. N.m.r. data of (APH₂)W(CO)₅ complexes.^a

A Et ₂ N–	(2)	δ(³¹ P) -17.9	¹ <i>J</i> (³¹ P– ¹⁸³ W) 244	¹ <i>J</i> (Р–Н) 342	δ(P <i>H</i>) 5.81	$\delta(A)$ Me : 0.70, ${}^{3}J(H-H)$ 7.1 CH ₂ : 2.57, ${}^{3}J(H-P)$ 12.9
MeO- HO- O- Cl-	(3) (4) (5) ^b (6)	54.5 29.4 62.1 -24	273 269 244 264	343 353 356 368	6.13 6.63 6.17 5.61	2.75, ³ J(H–P) 12.9 4.71 —

^a N.m.r. spectra were recorded in C₆D₆ solutions; δ in p.p.m., + ve for downfield shifts and J in Hz; Me₄Si as internal standard for ¹H and 85% H₃PO₄ as external reference for ³¹P. ^b Simulation of the AA'BB'XX' spectrum gave ³J(H-P) 5 Hz and ²J(P-P) ca. 60 Hz.

Reagents and conditions: i, $W(CO)_5(THF)$, THF, 20 °C, 3 h; ii, LiAlH₄, Et₂O, 20 °C, 0.5 h; iii, MeOH (excess) + 5% MeCO₂H, Et₂O, 20 °C, 0.5 h; iv, H₂O (excess) + 5% MeCO₂H, Et₂O, 20 °C, 0.5 h; v, heat, -H₂O; vi, dry HCl, C₆H₆, 20 °C, 5 min.

phosphinous acid complex (4) was purified by chromatography on silica gel with benzene-ethyl acetate (50/50). This acid shows a great tendency to dehydrate and gives quantitatively the corresponding anhydride (5) (m.p. 129 °C) by recrystallization in hexane-benzene (95/5). Complex (5) can be reconverted into (4) by chromatography on silica gel. Finally, the bubbling of dry gaseous HCl through a benzene solution of complex (2) afforded the unstable chlorophosphine complex (6). In this case, it was impossible to prevent the formation of some of the phosphine complex (7) (δ ³¹P -189 p.p.m.).

With the exception of complex (6), all the products described here were obtained in the pure state and fully characterized by ¹H n.m.r., ³¹P n.m.r., i.r. and [for (3) and (5)] elemental analysis. The most significant n.m.r. data are given in Table 1.

Received, 20th March 1984; Com. 384

References

- 1 H. Wallmeier and W. Kutzelnigg, J. Am. Chem. Soc., 1979, 101, 2804.
- 2 E. Wiberg and G. Müller-Schiedmayer, Z. Anorg. Allg. Chem., 1961, 308, 352.
- 3 M. Schmidt and H. H. J. Schroeder, Z. Anorg. Allg. Chem., 1970, 378, 192.
- 4 E. Niecke and R. Rüger, Angew. Chem., Int. Ed. Engl., 1982, 21, 62.
- 5 A. Marinetti and F. Mathey, Organometallics, 1982, 1, 1488.