The Primary Photoproducts of $Mn_2(CO)_{10}$: Direct I.R. Observation and Decay Kinetics of $Mn(CO)_5$ and $Mn_2(CO)_9$ in Hydrocarbon Solution at Room Temperature

Stephen P. Church, Horst Hermann, Friedrich-Wilhelm Grevels,* and Kurt Schaffner

Max-Planck-Institut für Strahlenchemie, D-4330 Mülheim a. d. Ruhr, West Germany

Time-resolved i.r. spectroscopy is used to show that $Mn(CO)_5$ and CO-bridged $Mn_2(CO)_9$ are the primary photoproducts of $Mn_2(CO)_{10}$ in hydrocarbon solution; $2Mn(CO)_5 \rightarrow Mn_2(CO)_{10}$ and $Mn_2(CO)_9 + CO \rightarrow Mn_2(CO)_{10}$ are established as the recombination processes.

Photolysis of $Mn_2(CO)_{10}$ is now believed to result in both homolytic cleavage of the Mn–Mn bond [reaction (1)] and loss of CO [reaction (2)]. The latter process has received little attention so far, although reaction (1) was found not to be the sole primary process in the photoreaction of $Mn_2(CO)_{10}$ with CCl_4 ,¹ and an intermediate other than $Mn(CO)_5$ was suggested in an early flash photolysis study.² Only recently has $Mn_2(CO)_{10}$ in both flash photolysis experiments^{3,4} and matrix isolation studies.^{5,6} Here, we present the first i.r. spectra of the transients $Mn(CO)_5$ and $Mn_2(CO)_9$ in solution, and we show that $Mn_2(CO)_{10}$ is reformed by two pathways [reactions (3) and (4)].

$$Mn_2(CO)_{10} \xrightarrow{h\nu} 2Mn(CO)_5$$
 (1)

$$Mn_2(CO)_{10} \xrightarrow{hv} Mn_2(CO)_9 + CO$$
 (2)

$$2Mn(CO)_5 \xrightarrow{k_3} Mn_2(CO)_{10}$$
(3)

$$Mn_2(CO)_9 + CO \xrightarrow{\kappa_4} Mn_2(CO)_{10}$$
 (4)

The technique for obtaining time-resolved i.r. spectra has been described previously.^{7,8} Rigorous sample preparation

procedures⁸ were followed throughout. Flash photolysis of 8×10^{-4} M Mn₂(CO)₁₀ in argon-saturated cyclohexane (C₆H₁₂) or n-heptane (C₇H₁₆) generated two initial transients. They were distinguishable by their decay kinetics and are assigned to Mn(CO)₅ [$t_{1/2}$ ca. 50 µs in C₇H₁₆, ca. 80 µs in C₆H₁₂; Figure 1(a)] and to Mn₂(CO)₉ [$t_{1/2}$ ca. 1 ms in C₇H₁₆, ca. 7 ms in C₆H₁₂; Figure 1(b)]. Under these conditions approximately 5–8% of Mn₂(CO)₁₀ was converted into photoproducts in one flash.

Only one i.r. band was observed for $Mn(CO)_5$ which, by comparison with the spectrum of $Mn(CO)_5$ in low temperature CO matrices⁹ (Table 1), is assigned to a superposition of the e and low-frequency a_1 vibrations of the square pyramidal $Mn(CO)_5$ fragment. Its decay in n-heptane, monitored at 1988 cm⁻¹, followed second-order kinetics, with k_3 in C_7H_{16} (Table 1) being in accord with previously determined rate constants for reaction (3).^{2,4,10,11} The nearly diffusion-controlled recombination reaction (3) proved to be the only process responsible for the decay of $Mn(CO)_5$ in both argon and CO saturated solution. No evidence was found for facile dissociative loss of CO as claimed by Brown and co-workers.¹⁰

 $Mn_2(CO)_9$ exhibited five terminal CO stretching vibrations and, as already observed in low-temperature matrices,^{5,6} a bridging CO band at 1760 cm⁻¹ (Table 1). Considering

Table 1. Rate constants and i.r. and visible absorptions of Mn(CO)₅ and Mn₂(CO)₉.

		Temperature (K)	Rate constants (dm ³ mol ⁻¹ s ⁻¹) k_3	Absorptions		
Compound	Medium			I.r. (cm ⁻¹)	Visible (nm)	Ref.
Mn(CO) ₅	$C_7 H_{16}$	R.t.d	$1 \times 10^{9} {}^{a}$	1988		
	$C_{6}H_{12}^{10}$	R.t.	$7 \times 10^{8 \text{ b}}$	1990	820c	
	0 11		$8.8 imes 10^8$			4
	EtOH	R.t.			830	11
	CO	20		1993,° 1988,° 1978	798	9
			k_4			
Mn ₂ (CO) ₉	$C_7 H_{16}$	R.t.	2.7×10^{6} f.g	2058, 2022, 2008		
				1996, 1968, 1760		
	$C_{6}H_{12}$	R.t.	$1.2 \times 10^{6 \mathrm{f.g}}$	2058, 2020, 2006,	480°	
			$5 \times 10^{5 \text{ h}}$	1994, 1966, 1760		
			7.5×10^{51}			
			$1.2 \times 10^{5 \text{ h}}$			4
	3-Methyl-	77		2055, 2017, 1986,		5
	pentane			1760		
	Argon	12		2058, 2037, 1993,		6
				1977, 1764		

^a Calculated from $k_3/\epsilon(1988 \text{ cm}^{-1}) = 1 \times 10^5 \text{ s}^{-1} \text{ cm}$ of the i.r. transient spectrum and, assuming the molar absorption coefficient of Mn(CO)₅ to be similar to that of Mn(CO)₅(halogen) compounds (ref. 18), an estimated $\epsilon(1988 \text{ cm}^{-1}) ca. 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$. ^b Calculated from the visible transient spectrum using $\epsilon(830 \text{ nm}) = 800 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$ for Mn(CO)₅ in EtOH (ref. 11). ^c Band also reported by Yesaka *et al.*⁴ in C₆H₁₂. ^d R.t. = room temperature. ^c Matrix-split e mode. ^f Measured from the i.r. transient spectrum with added CO (1.3 bar CO, $1.5 \times 10^{-2} \text{ M}$ in C₇H₁₆ and $1.2 \times 10^{-2} \text{ M}$ in C₆H₁₂; see ref. 13). ^g Cf. $k = 3 \times 10^6 \text{ dm}^3 \text{ mol}^{-1}$ s⁻¹ for the reaction of Cr(CO)⁵ in C₆H₁₂ with CO (ref. 14). ^h Measured from the visible transient spectrum in argon-saturated solution; calculated using an estimated $\epsilon(500 \text{ nm}) = 1000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$ (ref. 4). ⁱ Measured from the visible transient spectrum with added CO.

Figure 1. Transient i.r. spectra of the photoproducts of $Mn_2(CO)_{10}$ in n-heptane solution immediately after the flash. (a) $Mn(CO)_5$ (upper absorbance scale). (b) $Mn_2(CO)_9$ (lower absorbance scale); note the prominent bridging CO band at 1760 cm⁻¹.

the intensity of and position this band [cf. $Mn_2(CO)_5(Ph_2PCH_2PPh_2)_2^{12}$], we propose that the CO bridge in $Mn_2(CO)_9$ is unsymmetrical and can be described as $\mu(\eta^{1}:\eta^{2}-CO)$. Further support for this comes from lowtemperature matrix polarization studies.⁶ Clearly, no direct structural information of this kind is accessible by flash photolysis with u.v.-visible detection, but could only be provided by i.r. spectroscopy. In contrast to $Mn(CO)_5$, the decay of $Mn_2(CO)_9$ was affected by the addition of CO, reducing $t_{1/2}$ to *ca*. 50 µs in C₆H₁₂ (at *ca*. 1.2 × 10⁻² M CO) and ca. 20 µs in C₇H₁₆ (at ca. 1.5×10^{-2} M CO).¹³ The reactivity with CO (see Table 1 for k_4) is similar to that of $Cr(CO)_5^{14}$ which suggests that $Mn_2(CO)_9$ is not stabilised significantly by CO bridging. However, its decay was solvent dependent. In both argon and CO-saturated solutions, Mn₂(CO)₉ disappeared faster in C_7H_{16} than in C_6H_{12} . This behaviour is similar to that of $Cr(CO)_5^{15}$ which is known to co-ordinate solvent rapidly.16

In order to correlate the i.r. data of the two transients with their visible absorptions, flash photolyses were also carried out with u.v.-visible detection (excitation by either a Nd-YAG laser, 353 nm, or a xenon flash lamp, pulse durations 20 ns and 5 µs, respectively). Two initial transient bands observed at 820 and 480 nm are attributed to $Mn(CO)_5$ and $Mn_2(CO)_9$, respectively. The former assignment is made by comparison of absorption and decay kinetics with literature data (Table 1).^{4,9,11} Significantly, $Mn_2(CO)_9$ also disappeared by secondorder kinetics in argon-saturated C_6H_{12} , while upon saturation with CO the decay was accelerated and became pseudo first-order.[†] The second-order rate constants k_4 in C_6H_{12} reported for $Mn_2(CO)_9$ in this work, which range from 5×10^5 to 1.2×10^6 dm³ mol⁻¹ s⁻¹ (Table 1), are somewhat higher than the previously quoted k_4 value, 1.2×10^5 dm³ mol⁻¹ s⁻¹.⁴

The relative yields of $Mn(CO)_5$ and $Mn_2(CO)_9$ and the reformation rates of $Mn_2(CO)_{10}$ with both i.r. and u.v.-visible detection indicate, in accord with a previous finding,⁴ that the initial concentrations of $Mn(CO)_5$ and $Mn_2(CO)_9$ are approximately the same, *i.e.*, dissociation of CO is certainly *not* a minor process.[‡]

We thank Dr. H. Görner and Mr. L. Currell for their assistance with the laser flash photolysis experiments.

Received, 16th March 1984; Com. 355

References

- 1 A. Fox and A. Poë, J. Am. Chem. Soc., 1980, 102, 2497.
- 2 J. L. Hughey IV, C. P. Anderson, and T. L. Meyer, J. Organomet. Chem., 1977, 125, C49.
- 3 L. J. Rothberg, N. J. Cooper, K. S. Peters, and V. Vaida, J. Am. Chem. Soc., 1982, 104, 3536.
- 4 H. Yesaka, T. Kobayashi, K. Yasufuku, and S. Nagakura, 10th International Conference on Organometallic Chemistry, Toronto, 1981; J. Am. Chem. Soc., 1983, **105**, 6249.
- 5 A. F. Hepp and M. S. Wrighton, J. Am. Chem. Soc., 1983, 105, 5934.
- 6 I. R. Dunkin, personal communication.
- 7 H. Hermann, F.-W. Grevels, A. Henne, and K. Schaffner, J. Phys. Chem., 1982, 86, 5151.
- 8 S. P. Church, F.-W. Grevels, H. Hermann, and K. Schaffner, *Inorg. Chem.*, 1983, 23, in the press.
- 9 S. P. Church, M. Poliakoff, J. A. Timney, and J. J. Turner, J. Am. Chem. Soc., 1981, 103, 7515.
- R. D. Kidd and T. L. Brown, J. Am. Chem. Soc., 1978, 100, 4095;
 R. W. Wegman, R. S. Olsen, D. R. Gard, L. R. Faulkner, and T. L. Brown, *ibid.*, 1981, 103, 6089.
- 11 W. L. Waltz, O. Hackelberg, L. M. Dorfman, and A. Wojcicki, J. Am. Chem. Soc., 1978, 100, 7259.
- 12 R. Colton, C. J. Commons, and B. F. Hoskins, J. Chem. Soc., Chem. Commun., 1975, 363; C. J. Commons and B. F. Hoskins, Aust. J. Chem., 1975, 28, 1663.
- 13 CO concentrations at 1.3 bar extrapolated from data in E. Wilhelm and R. Battino, *Chem. Rev.*, 1973, **73**, 1.
- 14 J. M. Kelly, H. Hermann, and E. Koerner von Gustorf, J. Chem. Soc., Chem. Commun., 1973, 105; J. M. Kelly, D. V. Bent, H. Hermann, D. Schulte-Frohlinde, and E. Koerner von Gustorf, J. Organomet. Chem., 1974, 69, 259.
- 15 S. P. Church, unpublished results.
- 16 J. J. Turner and M. Poliakoff, Am. Chem. Soc. Symp. Ser., 1983, 211, 35, and references therein.
- 17 U. Koelle, J. Organomet. Chem., 1978, 155, 53.
- 18 E. W. Abel and I. S. Butler, Trans. Faraday Soc., 1967, 63, 45.

‡ Occasional irregular kinetic behaviour of $Mn_2(CO)_9$ in the i.r. experiments, observed only in the first filling of the i.r. cell (argon-flushed C_6H_{12}), is due to addition of an as yet unidentified trace contaminant X of the instrumental system. $Mn_2(CO)_9$ decayed with a first-order rate constant of 2500 s^{-1} ($t_{1/2}$ ca. 280 µs) to $Mn_2(CO)_9X$ which has i.r. absorptions at 2026 (5), 1998 (8), 1980 (10), 1964 (5), and 1930 (3) cm⁻¹ (approximate relative intensities in parentheses) and which disappeared with a first-order rate constant of 5 s^{-1} ($t_{1/2}$ ca. 140 ms). Comparison with known $Mn_2(CO)_9L$ derivatives¹⁷ suggests that X is a strongly donating ligand occupying an equatorial position.

^{\dagger} A shortening of the lifetime of Mn₂(CO)₉ after many flashes in an argon-saturated solution can be attributed to CO liberation caused by some small decomposition of photoproducts, thus accelerating reaction (4).