The Primary Photoproducts of Mn₂(CO)₁₀: Direct I.R. Observation and Decay Kinetics of Mn(CO)₅ and Mn₂(CO)₉ in Hydrocarbon Solution at Room Temperature

Stephen P. Church, Horst Hermann, Friedrich-Wilhelm Grevels,* and Kurt Schaffner

Max-Planck-lnstitut fur Strahlenchemie, 0-4330 Mulheim a. d. Ruhr, West Germany

Time-resolved i.r. spectroscopy is used to show that $Mn(CO)_{5}$ and CO-bridged $Mn_{2}(CO)_{9}$ are the primary photoproducts of $Mn_2(CO)_{10}$ in hydrocarbon solution; $2Mn(CO)_{5} \rightarrow Mn_2(CO)_{10}$ and $Mn_2(CO)_{9} + CO \rightarrow Mn_2(CO)_{10}$ are established as the recombination processes.

Photolysis of $Mn_2(CO)_{10}$ is now believed to result in both homolytic cleavage of the Mn–Mn bond [reaction (1)] and loss of CO [reaction (2)]. The latter process has received little attention so far, although reaction (1) was found not to be the sole primary process in the photoreaction of $Mn₂(CO)₁₀$ with CCI_4 ,¹ and an intermediate other than $\text{Mn}(\text{CO})_5$ was suggested in an early flash photolysis study.2 Only recently has $Mn₂(CO)₉$ been postulated as the second photoproduct of $Mn_2(CO)_{10}$ in both flash photolysis experiments^{3,4} and matrix isolation studies.5.6 Here, we present the first i.r. spectra of the transients $Mn(CO)_{5}$ and $Mn₂(CO)_{9}$ in solution, and we show that $Mn_2(CO)_{10}$ is reformed by two pathways [reactions] (3) and (4)].

$$
Mn_2(CO)_{10} \xrightarrow{hv} 2Mn(CO)_5 \tag{1}
$$

$$
Mn_2(CO)_{10} \xrightarrow{hv} 2Mn(CO)_5 \tag{1}
$$

$$
Mn_2(CO)_{10} \xrightarrow{hv} Mn_2(CO)_9 + CO \tag{2}
$$

$$
2Mn(CO)_5 \xrightarrow{k_3} Mn_2(CO)_{10} \tag{3}
$$

$$
Mn_2(CO)_9 + CO \xrightarrow{k_4} Mn_2(CO)_{10} \tag{4}
$$

The technique for obtaining time-resolved i.r. spectra has been described previously.^{7,8} Rigorous sample preparation

procedures8 were followed throughout. Flash photolysis of 8×10^{-4} M Mn₂(CO)₁₀ in argon-saturated cyclohexane (C_6H_{12}) or n-heptane (C_7H_{16}) generated two initial transients. They were distinguishable by their decay kinetics and are assigned to $\text{Mn}(\text{CO})_5$ $[t_{1/2}$ *ca.* 50 μ s in C_7H_{16} , *ca.* 80 μ s in C_6H_{12} ; Figure 1(a)] and to $Mn_2(CO)_9$ *[t_{1/2} ca.* 1 ms in C₇H₁₆, *ca.* 7 ms in C_6H_{12} ; Figure 1(b)]. Under these conditions approximately $5-\frac{8}{9}$ of $Mn_2(\text{CO})_{10}$ was converted into photoproducts in one flash.

Only one i.r. band was observed for $Mn(CO)$, which, by comparison with the spectrum of $Mn(CO)_{5}$ in low temperature CO matrices⁹ (Table 1), is assigned to a superposition of the e and low-frequency a_1 vibrations of the square pyramidal $Mn(CO)$ ₅ fragment. Its decay in n-heptane, monitored at 1988 cm⁻¹, followed second-order kinetics, with k_3 in C₇H₁₆ (Table 1) being in accord with previously determined rate constants for reaction (3) . 2,4,10,11 The nearly diffusion-controlled recombination reaction (3) proved to be the only process responsible for the decay of $Mn(CO)$ ₅ in both argon and CO saturated solution. No evidence was found for facile dissociative loss of CO as claimed by Brown and co-workers.10

 $Mn₂(CO)₉$ exhibited five terminal CO stretching vibrations and, as already observed in low-temperature matrices, 5.6 a bridging CO band at 1760 cm^{-1} (Table 1). Considering

Table 1. Rate constants and i.r. and visible absorptions of $Mn(CO)_{5}$ and $Mn_{2}(CO)_{9}$.

^a Calculated from $k_1 \kappa (1988 \text{ cm}^{-1}) = 1 \times 10^5 \text{ s}^{-1} \text{ cm}$ of the i.r. transient spectrum and, assuming the molar absorption coefficient of Mn(CO)₅ to be similar to that of Mn(CO)₅(halogen) compounds (ref. 18), an estimated ε (1988 cm⁻¹⁾ *ca.* 10⁴ dm³ mol⁻¹ cm⁻¹. ^b Calculated from the visible transient spectrum using ϵ (830 nm) = 800 dm³ mol⁻¹ cm⁻¹ for Mn(CO)₅ in EtOH (ref. 11). *c* Band also reported by Yesaka *et al.*⁴ in C₆H₁₂. d R.t. = room temperature. « Matrix-split e mode. *f* Measured from the i.r. transient spectrum with added CO (1.3 bar CO, 1.5×10^{-2} M in C₇H₁₆ and 1.2×10^{-2} M in C₆H₁₂; see ref. 13). *k Cf. k* = 3 × 10⁶ dm³ mol⁻¹ s^{-1} for the reaction of Cr(CO)^s in C₆H₁₂ with CO (ref. 14). *Measured from the visible transient spectrum in argon-saturated solution*; calculated using an estimated ϵ (500 nm) = 1000 dm³ mol⁻¹ cm⁻¹ (ref. 4). *I* Measured from the visible transient spectrum with added CO.

Figure 1. Transient i.r. spectra of the photoproducts of $Mn_2(CO)_{10}$ in n-heptane solution immediately after the flash. (a) $Mn(CO)$ ₅ (upper absorbance scale). (b) $Mn_2(CO)$, (lower absorbance scale); note the prominent bridging CO band at 1760 cm⁻¹.

the intensity and position of this band [cf. $Mn_2(CO)_{5}(Ph_2PCH_2PPh_2)_{2}^{12}$], we propose that the CO bridge in $Mn₂(CO)$ ₉ is unsymmetrical and can be described as $\mu(\eta^1:\eta^2-CO)$. Further support for this comes from lowtemperature matrix polarization studies.6 Clearly, no direct structural information of this kind is accessible by flash photolysis with u.v.-visible detection, but could only be provided by i.r. spectroscopy. In contrast to $Mn(CO)_{5}$, the decay of $Mn₂(CO)₉$ was affected by the addition of CO, reducing $t_{1/2}$ to *ca.* 50 μ s in C₆H₁₂ (at *ca.* 1.2×10^{-2} M CO) and *ca.* 20 μ s in C₇H₁₆ (at *ca.* 1.5 \times 10⁻² M CO).¹³ The reactivity with CO (see Table 1 for k_4) is similar to that of $Cr(CO)_5^{14}$ which suggests that $Mn₂(CO)_{9}$ is not stabilised significantly by CO bridging. However, its decay was solvent dependent. In both argon and CO-saturated solutions, $Mn_2(CO)$ ₉ disappeared faster in C_7H_{16} than in C_6H_{12} . This behaviour is similar to that of $Cr(CO)₅15$ which is known to co-ordinate solvent rapidly. **¹⁶**

In order to correlate the i.r. data of the two transients with their visible absorptions, flash photolyses were also carried out with u.v.-visible detection (excitation by either a Nd-YAG laser, 353 nm, or a xenon flash lamp, pulse durations 20 ns and 5 **ps,** respectively). Two initial transient bands observed at 820 and 480 nm are attributed to $Mn(CO)_{5}$ and $Mn_{2}(CO)_{9}$, respectively. The former assignment is made by comparison of absorption and decay kinetics with literature data (Table 1).^{4,9,11} Significantly, $Mn₂(CO)$ ₉ also disappeared by secondorder kinetics in argon-saturated C_6H_{12} , while upon saturation with CO the decay was accelerated and became pseudo first-order.† The second-order rate constants k_4 in C_6H_{12} reported for $Mn_2(CO)$ ⁹ in this work, which range from 5×10^5 to 1.2×10^6 dm³ mol⁻¹ s⁻¹ (Table 1), are somewhat

higher than the previously quoted k_4 value, 1.2×10^5 dm³ mol⁻¹ s^{-1.4}

The relative yields of $Mn(CO)_{5}$ and $Mn₂(CO)_{9}$ and the reformation rates of $Mn_2(CO)_{10}$ with both i.r. and u.v.-visible detection indicate, in accord with a previous finding,⁴ that the initial concentrations of $Mn(CO)_{5}$ and $Mn_{2}(CO)_{9}$ are approximately the same, *i.e.,* dissociation of CO is certainly *not* a minor process. \ddagger

We thank Dr. H. Görner and Mr. L. Currell for their assistance with the laser flash photolysis experiments.

Received, 16th March 1984; Corn. 355

References

- 1 A. Fox and **A.** Poe, *J. Am. Chem. SOC.,* 1980, 102,2497.
- 2 J. L. Hughey IV, C. P. Anderson, and T. L. Meyer, *J. Organomet. Chem.,* 1977, **125,** C49.
- 3 L. J. Rothberg, N. J. Cooper, K. **S.** Peters, and V. Vaida, J. *Am. Chem. SOC.,* 1982, 104, 3536.
- 4 H. Yesaka, T. Kobayashi, K. Yasufuku, and **S.** Nagakura, 10th International Conference on Organometallic Chemistry, Toronto, 1981;J. *Am. Chem. SOC.,* 1983, 105, 6249.
- *5* A. F. Hepp and M. **S.** Wrighton,J. *Am. Chem.* Soc., 1983, 105, 5934.
- 6 I. R. Dunkin, personal communication.
- **7** H. Hermann, F.-W. Grevels, **A.** Henne, and K. Schaffner, *J. Phys. Chem.,* 1982, **86,** 5151.
- 8 **S.** P. Church, F.-W. Grevels, H. Hermann, and K. Schaffner, *Inorg. Chem.,* 1983, 23, in the press.
- 9 **S.** P. Church, M. Poliakoff, J. A. Timney, and J. J. Turner, *J. Am. Chem.* Soc., 1981, 103, 7515.
- 10 R. D. Kidd and T. L. Brown, *J. Am. Chem. Soc.,* 1978,100,4095; R. W. Wegman, R. **S.** Olsen, D. R. Gard, L. R. Faulkner, and T. L. Brown, *ibid.,* 1981, 103, 6089.
- 11 W. L. Waltz, 0. Hackelberg, L. M. Dorfman, and A. Wojcicki, *J. Am. Chem. SOC.,* 1978, 100,7259.
- 12 R. Colton, C. J. Commons, and B. F. Hoskins, *J. Chem. Soc., Chem. Commun.,* 1975, 363; C. J. Commons and B. F. Hoskins, *Aust. J. Chem.,* 1975, 28, 1663.
- 13 CO concentrations at 1.3 bar extrapolated from data in E. Wilhelm and R. Battino, *Chem. Rev.,* 1973, **73,** 1.
- 14 J. M. Kelly, H. Hermann, and E. Koerner von Gustorf, *J. Chem. SOC., Chem. Commun.,* 1973, 105; J. **M.** Kelly, D. V. Bent, H. Hermann, D. Schulte-Frohlinde, and E. Koerner von Gustorf, *J. Organomet. Chem.,* 1974, **69,** 259.
- 15 **S.** P. Church, unpublished results.
- 16 J. J. Turner and M. Poliakoff, Am. Chem. Soc. Symp. Ser., 1983, 211, *35,* and references therein.
- **17** U. Koelle, *J. Organomet. Chem.,* 1978, 155, *53.*
- 18 E. W. Abel and I. **S.** Butler, *Trans. Faraday SOC.,* 1967, **63,** 45.

 \ddagger Occasional irregular kinetic behaviour of Mn₂(CO)₉ in the i.r. experiments, observed only in the first filling of the i.r. cell (argon-flushed C_6H_{12}), is due to addition of an as yet unidentified trace contaminant **X** of the instrumental system. $Mn_2(CO)$ ₉ decayed with a first-order rate constant of 2500 s^{-1} $(t_{1/2} \text{ ca. } 280 \text{ \mu s})$ to Mn₂(CO)₉X which has i.r. absorptions at 2026 (5), 1998 (8), 1980 (10), 1964 *(5),* and 1930 (3) cm-1 (approxipate relative intensities in parentheses) and which disappeared with a first-order rate constant of 5 s^{-1} ($t_{1/2}$ *ca.* 140 ms). Comparison with known $Mn_2(CO)_{9}L$ derivatives¹⁷ suggests that X is a strongly donating ligand occupying an equatorial position.

 \uparrow A shortening of the lifetime of Mn₂(CO)₉ after many flashes in an argon-saturated solution can be attributed to CO liberation caused by some small decomposition of photoproducts, thus accelerating reaction (4).