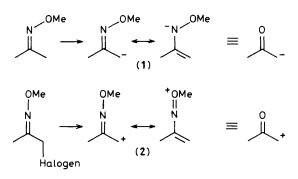
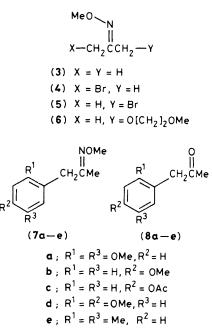
## A Novel Route to Arylacetones *via* a Masked α-Acylcarbonium Intermediate


Shimon Shatzmiller,\* Ramy Lidor, Eytan Shalom, and Eliezer Bahar

Department of Chemistry, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

The Ag+ induced aromatic substitution reaction of bromoacetone O-methyloxime is described.

Oxime ethers can be efficiently metallated at the  $\alpha$ -carbon atoms and the derived enolate equivalents (1) can then participate in a variety of useful carbon–carbon bond-forming reactions.<sup>1</sup> The  $\alpha$ -carbon atom might also support a positive charge [*i.e.* (2)] stabilized by n-type electron delocalization from the oxime group, and this cation could act as a synthetic equivalent of an  $\lambda$ -acylcarbonium ion( $-CO-C \leq 1$ ).<sup>2</sup> In this communication we describe a method for the conversion of oxime ethers into functionalized ketones using reactive intermediates of type (1) or (2), employing acetone *O*-methyloxime as a model compound.


Lithiation of acetone *O*-methyloxime (3) was achieved with a 1.2 m solution of Bu<sup>n</sup>Li in tetrahydrofuran (THF)-hexane in 5 min at -65 °C. Addition of lithiated (3) to molecular



bromine in THF at -65 °C over 15 min resulted in the formation of the Z-bromo-oxime ether, (4). Isomerization of (4) in CHCl<sub>3</sub>-HBr gave the thermodynamically-favoured *E*-isomer, (5).† The halogen atom could be exchanged for alkoxy by treatment of (5) with 1.1 equiv. of MeO[CH<sub>2</sub>]<sub>2</sub>ONa in THF for 12 h to give (6) in 88% yield.

The bromo-oxime ethers (4) and (5), were also converted into a reactive intermediate of type (2) which reacted in aromatic substitution reactions. Addition of 10 mmol of either (4) or (5) in 20 ml of dry Cl[CH<sub>2</sub>]<sub>2</sub>Cl to a solution of 10 mmol of AgBF<sub>4</sub> and 10 mmol of the aromatic compound in 20 ml of Cl[CH<sub>2</sub>]<sub>2</sub>Cl at 25 °C, followed by efficient stirring in the dark for 18 h and then work-up with a 10% KCN-H<sub>2</sub>O solution gave good (82—91%) yields of the aromatic substitution products (7**a**—**e**)<sup>+</sup> as the *E*-isomers. Acid treatment of (7**a**—**e**) (HCl-H<sub>2</sub>O-MeOH 1:5:5) for 10 h at 65 °C and distillation gave the corresponding arylacetones, (8**a**—**e**), in high (90%) yields.

The method described in this paper is related to the silverinduced aromatic substitution reaction studied by Eschenmoser a decade ago using chloroaldonitrones as acylcar-



bonium ion precursors for the synthesis of aldehydes.<sup>4</sup> Recently we investigated the possibility of extending the nitrone method to the preparation of methyl ketones but our attempts to synthesize suitable halogenated nitrones were unsuccessful.

Received, 27th February 1984; Com. 259

## References

- V. Jaeger, H. Grund, and W. Schwab, Angew. Chem., Int. Ed. Engl., 1979, 18, 78; S. Shatzmiller and R. Lidor, J. Am. Chem. Soc., 1981, 103, 5916.
- 2 J.-P. Begue and M. Charpentier-Morize, Acc. Chem. Res., 1980, 13, 207.
- 3 G. J. Karbatsos and N. Hsi, Tetrahedron, 1967, 23, 1079.
- 4 S. Shatzmiller, P. Gygax, D. Hall, and A. Eschenmoser, *Helv. Chim. Acta*, 1973, **56**, 2961.

<sup>&</sup>lt;sup>†</sup> The geometry of the oxime ether moiety was elucidated on the basis of the chemical shift of the ketone Me group in the <sup>1</sup>H n.m.r. spectrum (CCl<sub>4</sub>), *e.g.*: the methyl hydrogens resonate at  $\delta$  2.01 in (4) but in (5) at  $\delta$  1.96. In (6),  $\delta_{Me}$  is at 1.79, (the *E*-isomer has  $\delta_{Me}$  1.91), for (7a–e) the resonances are at  $\delta$  1.71, 1.70, 1.70, 1.71, and 1.74, respectively, whereas the corresponding *Z*-isomers have shifts at  $\delta$  1.75, 1.73, 1.74, 1.76, and 1.76, respectively. See also ref. 3.