Synthesis and Absolute Configuration of Optically Active *E*-1-Alkoxymethoxybut-2-enyl(tri-n-butyl)stannanes: Stereoselective Reactions with Aldehydes

Vincent J. Jephcote, Andrew J. Pratt, and Eric J. Thomas*

The Dyson Perrins Laboratory, South Parks Road, Oxford, OX1 3QY, U.K.

(1R)- and (1S)-1-[(-)-menthoxymethoxy]-E-but-2-enyl(tri-n-butyl)stannanes (5) and (6), whose configurations at C(1) were assigned by correlation with (2R)- and (2S)-pentan-2-ol, react stereoselectively on heating with benzaldehyde to give (3S,4S)- and (3R,4R)-4-hydroxy-3-methyl-cis-1,2-enol ethers (11) and (13), respectively.

(\pm)-E-1-Methoxymethoxybut-2-enyl(tri-n-butyl)stannane (1) reacts stereoselectively with aldehydes on heating to give (\pm)-anti-4-hydroxy-3-methyl-cis-1,2-enol ethers (2). † We report here the preparation and characterization of optically active 1-[(–)-menthoxymethoxy]-E-but-2-enyl(tri-n-butyl)-stannanes (5) and (6) together with details of their reactions with aldehydes.

Chloromethyl (-)-menthyl ether (4)³ was prepared by bubbling anhydrous HCl through a solution of (-)-menthol and trioxane in CH₂Cl₂ in the presence of anhydrous MgSO₄ (b.p. 82—84 °C at 0.8 mm Hg, 54%), and was added to a mixture of racemic stannol (3)¹ and di-isopropylethylamine in CH₂Cl₂ to give, after 2 h at 0 °C and 2 h at 20 °C, a mixture of the diastereoisomeric but-2-enylstannanes (5) and (6), isol-

Me
$$SnBu^{n}_{3}$$
 $RCHO$ Me OMe Me OMe $(\pm)-(2)$

ated as a mixture by flash chromatography (59%). Careful short-column chromatography (eluted with 40/60 petroleumbenzene, 5:1) gave the (1*R*)-diastereoisomer (5), $[\alpha]_D^{20} + 12.1^\circ$ (CHCl₃), followed by the (1*S*)-diastereoisomer (6), $[\alpha]_D^{20} - 91.1^\circ$ (CHCl₃), which could be distinguished by t.l.c. and by high field (300 MHz) ¹H n.m.r. spectroscopy.‡

[†] For the *syn-anti* nomenclature see the discussion by S. Masamune, ref. 2.

[‡] New compounds were fully characterised spectroscopically and by combustion analysis whenever possible.

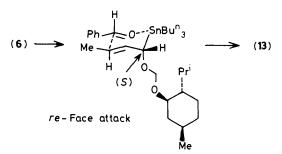
Scheme 1. Reagents: i, TsNHNH₂, NaOAc, EtOH; ii, BuⁿLi, tetrahydrofuran, -78 °C, 5 min, then Me₂SO₄, -78 °C, $1\frac{3}{4}$ h; iii, (4), Pri₂NEt, 0 °C, 2 h, then 20 °C, 2 h.

Absolute configurations at C(1) were assigned to stannanes (5) and (6) by correlation with (2R)- and (2S)-pentan-2-ol as shown in Scheme 1. Thus di-imide reduction of the higher R_f stannane, followed by transmetallation (BuⁿLi, -78 °C, 5 min) and methylation (Me₂SO₄, -78 °C, $1\frac{3}{4}$ h), a procedure known to involve retention of configuration, 4 gave the (2R)-pentan-2-ol derivative (8) which was also prepared from authentic (2R)-pentan-2-ol. 5\S Similarly the lower R_f stannane was converted into the (2S)-pentan-2-ol derivative (10) which was also prepared from (2S)-pentan-2-ol. The pentan-2-ol

Scheme 2

derivatives (8) and (10) were clearly distinguished by high field (300 MHz) ¹H n.m.r. spectroscopy, and enabled configurational assignments to be made as shown.

 $[\]S$ (±)-Pentan-2-ol was resolved following the procedure of J. K. Whitesell (ref. 6). Using (S)-mandelic acid, the ester (I) of (2R)-pentan-2-ol crystallized out which gave (2R)-pentan-2-ol, $\{\alpha\}_D^{20}-13.5^{\circ}$ (CHCl₃) (lit.⁵ –16.1°), on hydrolysis. Ester (II) was obtained from (R)-mandelic acid.


The menthoxymethoxystannanes (5) and (6) were then heated separately with an excess of benzaldehyde (130 °C, 15 h) under an argon atmosphere. The (1R)-isomer (5) gave the (3S,4S)-4-hydroxy-3-methyl-cis-1,2-enolether (11), whereas the (1S)-isomer (6) gave the (3R,4R)-enol ether (13), both isolated in 70—80% yields after flash chromatography. The diastereoisomers (11) and (13) could be distinguished by 1H n.m.r. spectroscopy, and examination of the crude reaction mixtures showed that no appreciable crossover had occurred, only the (3S,4S)-isomer (11) being obtained from stannane (5), and only the (3R,4R)-isomer (13) being obtained from stannane (6); see Scheme 2.

Ozonolysis followed by a dimethyl sulphide work up, oxidation (Ag₂O), and esterification (CH₂N₂) of the enol ethers (11) and (13), gave the enantiomeric hydroxy-esters (14) and (16), respectively (40% overall). The enantiomeric excess of each of these esters exceeded 90% as measured by optical rotation,⁷ and by conversion into their (-)- α -methoxy- α -(trifluoromethyl)phenylacetate [(-)-MTPA] derivatives (15) and (17).⁸ Prior conversion of the enol ether (11) into its (-)-MTPA ester (12) followed by ozonolysis, oxidation, and esterification gave ester (15) with an enantiomeric excess of >98% so showing that the small amount of racemization observed earlier had occurred during the ozonolysis or subsequent steps perhaps *via* reversible aldol equilibration.

Absolute configurations were assigned to the hydroxyesters by correlation with pseudoephedrine. Thus the (-)-hydroxy-acid, readily available by cinchonidine resolution 7 of the (\pm) -acid, 9 was found to have the absolute configuration shown in formula (18) since Schmidt rearrangement $[(PhO)_2P(O)N_3]$ and reduction $(LiAlH_4)$ gave (-)-pseudoephedrine (20) whose absolute configuration is known. 10 Esterification of the (-)-acid (18) with diazomethane gave the (-)-ester (14).

The selective transformations of benzaldehyde into *anti*-4-hydroxy-3-methyl-cis-1,2-enol ethers (11) and (13) using the optically active α -alkoxybut-2-enylstannanes (5) and (6), are consistent with the cyclic transition states shown in Scheme 3. The marked preference for the α -alkoxy group to adopt an axial position in each of these transition states^{1,11} ensures that the (1R)- and (1S)-diastereoisomers (5) and (6) react selectively with the si- and re-faces of the benzaldehyde carbonyl group as shown.

$$(5) \longrightarrow \begin{array}{c} \text{Me} & \stackrel{\text{H}}{\longrightarrow} \text{SnBu}^{n}_{3} \\ \text{H Ph O} & \text{Pr}^{i} \\ \text{Si-Face attack} & \text{Me} \end{array}$$

Scheme 3

Similar discrimination was observed with other aldehydes. Thus the (1R)-stannane (5) was heated with an excess of cyclohexanecarboxaldehyde and cinnamaldehyde to give adducts (21) (80%) and (22) (68%). The stereochemistry of these products was assigned by analogy with the benzaldehyde series, and was confirmed for the cyclohexanecarboxaldehyde adduct (21) by ozonolysis, oxidation, and esterification, which gave the (-)-hydroxy ester (23), $[\alpha]_D^{20} - 8.1^\circ$ (CHCl₃), the absolute configuration of which has been assigned by Meyers.¹²

We thank the S.E.R.C. for support (to V. J. J. and A. J. P.), and the Royal Society of Chemistry for a Hickinbottom Award. We are grateful to Dr. A. Derome and Mrs. McGuinness for n.m.r. spectra and to Dr. R. T. Aplin for mass spectra.

Received, 3rd April 1984; Com. 468

References

- 1 A. J. Pratt and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1982, 1115.
- S. Masamune, Sk. A. Ali, D. L. Snitman, and D. S. Garvey, *Angew. Chem.*, *Int. Ed. Engl.*, 1980, 19, 557; S. Masamune, T. Kaiho, and D. S. Garvey, *J. Am. Chem. Soc.*, 1982, 104, 5521.
- 3 K. A. Adrianov, A. A. Mamedov, L. M. Volkova, and E. I. Klabunovskii, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1969, 2305.
- 4 W. C. Still and C. Sreekumar, J. Am. Chem. Soc., 1980, 102, 1201.
- 5 R. U. Lemieux and J. Giguère, Can. J. Chem., 1951, 29, 678.
- 6 J. K. Whitesell and D. Reynolds, *J. Org. Chem.*, 1983, 48, 3548.
 7 T. Matsumoto, I. Tanaka, and K. Fukui, *Bull. Chem. Soc. Jpn.*, 1971, 44, 3378.
- 8 J. A. Dale, D. L. Dull, and H. S. Mosher, *J. Org. Chem.*, 1969, **34**, 2543.
- M. C. Pirrung and C. H. Heathcock, J. Org. Chem., 1980, 45, 1727.
- 10 S. W. Pelletier, 'Chemistry of the Alkaloids,' van Nostrand Reinhold, New York, 1970, p. 24.
- 11 P. Ganis, D. Marton, V. Peruzzo, and G. Tagliavini, J. Organomet. Chem., 1982, 231, 307.
- 12 A. I. Meyers and Y. Yamamoto, J. Am. Chem. Soc., 1981, 103, 4278.