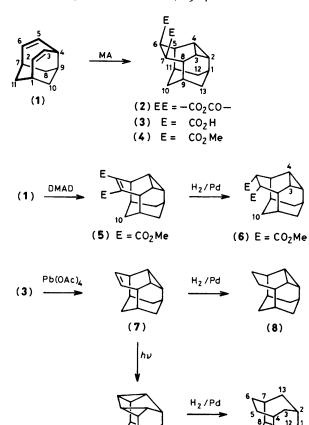
Homo-Diels–Alder Route to Homoiceane (Tetracyclo[6.3.1.1^{2,7}.0^{4,10}]tridecane)

Ryohei Yamaguchi,* Masakazu Ban, and Mituyosi Kawanisi*

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606, Japan


Homo-Diels–Alder reaction of tricyclo[5.3.1.0^{4,9}]undeca-2,5-diene (1) results in a one-step construction of the didehydrohomoiceane skeleton, from which homoiceane (10) and further cyclised derivatives may be synthesized.

The [2 + 2 + 2] cycloaddition of a 1,4-diene with a dienophile, the homo-Diels-Alder reaction, is a potentially useful synthetic reaction, producing two C-C bonds and a cyclopropane ring in one step.¹ The use of 1,4-dienes, however, has been limited mainly to bridged cyclohexa-1,4-dienes; studies have been restricted almost exclusively to norbornadiene, which is the most reactive of such 1,4-diene systems. Recently we have found that tricyclo $[5.3.1.0^{4,9}]$ undeca-2,5-diene $(1)^2$ reacts with tetracyanoethene faster than norbornadiene to give the homo-Diels-Alder adduct,³ providing the first example of a cyclo-octa-1,4-diene system participating as a diene partner in the homo-Diels-Alder reaction. In addition to its mechanistic interest, the resulting adduct (homoiceane) is a homologue of iceane.⁴ This communication describes the first synthesis of homoiceane (10) and further cyclised derivatives by using this highly efficient one-step framework construction.

When a 2:3 mixture of (1) and maleic anhydride (MA) in *o*-dichlorobenzene was heated under reflux for 12 h, the single homo-Diels-Alder adduct (2), m.p. 153–155 °C,† was obtained (81%). The ¹³C n.m.r. spectrum of (2) [δ 174.7 (s), 44.1 (d), 32.6 (t), 31.9 (t), 31.0 (d), 28.4 (d), 18.4 (d), 15.4 (d), and 5.5 (d)] clearly indicated C_s symmetry. Basic hydrolysis of (2) followed by treatment with CH₂N₂ gave the *exo*-dimethyl ester (4). Cycloaddition of (1) with dimethyl acetylenedicarboxylate (DMAD) afforded the adduct (5), m.p. 63–64 °C, but in low yield (22%). However, addition of a catalytic amount of Ni(CN)₂(PPh₃)₂⁵ (2 mol%) increased the yield to 45%. Hydrogenation of (5) over Pd black took place from the *exo*-side, probably owing to steric hindrance by 10-H, to give the *endo*-dimethyl ester (6) which is an isomer of (4).

The stereochemical assignments to (4) and (6) were further supported by a steric compression effect observed in their ¹³C n.m.r. spectra. The C-3 (C-4) signal appears at higher field (δ 6.3) in (4) than in (6) (δ 10.6), whereas the C-10 signal is at lower field (δ 32.2) in (4) than in (6) (δ 29.2). Thus, it is

[†] All new compounds gave satisfactory analytical and spectral data.

noteworthy that the present homo-Diels-Alder reaction proceeds exclusively in an *endo*-selective fashion.‡

(10)

(9)

Oxidative decarboxylation of the dicarboxylic acid (3) by $Pb(OAc)_4$ in pyridine⁷ gave the 3,13-cyclo compound (7) (65%), hydrogenation (Pd black; MeOH) of which gave the

[‡] In the reaction of norbornadiene with maleic anhydride, 67–79% *endo*-selectivity was observed.⁶ The steric hindrance due to the C-11 methylene bridge of (1) may cause the *endo*-selectivity in the present example.

saturated compound (8) (97%).§ Irradiation of (7) in ether by a medium-pressure mercury lamp through a quartz filter induced a [$_{\pi}2 + _{\sigma}2$] cycloaddition to give compound (9) (64%), along with a small amount of unchanged (7).¶ The ¹H n.m.r. spectrum of (9) showed no olefinic protons and its ¹³C n.m.r. spectrum [δ 35.6 (d), 35.5 (t), 33.8 (d), 33.3 (d), 32.4 (t), 27.1 (d), 26.7 (d), and 22.5 (d)] clearly indicated C_s symmetry. This highly strained hydrocarbon (9) is expected to be reactive in the presence of transition metals, and, when treated with Pd black under H₂ in MeOH, hydrogenation of the two cyclopropane rings took place simultaneously to afford a 1 : 1 mixture of homoiceane (10) and (8) (91%), along with a small amount of an unidentified product. The ¹³C n.m.r. spectrum of (10) [δ 35.0 (t), 34.2 (t and d), 32.8 (t), 31.7 (d), 30.7 (t), 30.2 (d), and 26.4 (d)] clearly indicated C_s symmetry.

This work was partially supported by a Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture of Japan.

Received, 13th March 1984; Com. 347

References

- 1 G. N. Fickes and T. E. Metz, J. Org. Chem., 1978, 43, 4057; G. Jenner and M. Papadopoulos, Tetrahedron Lett., 1982, 23, 4333.
- 2 T. Katsushima, R. Yamaguchi, and M. Kawanisi, J. Chem. Soc., Chem. Commun., 1975, 692; Bull. Chem. Soc. Jpn., 1982, 55, 3245.
- 3 R. Yamaguchi, M. Ban, M. Kawanisi, E. Ōsawa, C. Jaime, A. B. Buda, and S. Katsumata, J. Am. Chem. Soc., 1984, 106, 1512.
- 4 C. A. Cupas and L. Hodekowski, J. Am. Chem. Soc., 1974, 96, 4668; H. Tobler, R. O. Klaus, and C. Ganter, *Helv. Chim. Acta*, 1975, 58, 1445; D. P. G. Hamon and G. F. Taylor, *Aust. J. Chem.*, 1976, 29, 2451.
- 5 G. N. Schrauzer and P. Glockner, Chem. Ber., 1964, 97, 2451.
- 6 I. Tabushi, K. Yamamura, Z. Yoshida, and A. Togashi, Bull. Chem. Soc. Jpn., 1975, 48, 2922.
- 7 C. M. Cimarusti and J. Wolinsky, J. Am. Chem. Soc., 1968, 90, 113.

§ Further hydrogenation of (8) under more drastic conditions gave an unwanted product rather than (10).

¶ The ratio of (9) to (7) was 2.7:1 after 12 h irradiation; further irradiation did not change this ratio.