843

The Reaction of Ph₃P+SR with Thiols: A Simple, Efficient Synthesis of Unsymmetrical Disulphides

Masaichiro Masui,* Yasuyuki Mizuki, Kiyoshi Sakai, Chihiro Ueda, and Hidenobu Ohmori

Faculty of Pharmaceutical Sciences, Osaka University, 1–6 Yamadaoka, Suita, Osaka 565, Japan

Reaction of $Ph_3P+SRCIO_4^-$, prepared electrochemically from RSSR and Ph_3P , with thiols in n-hexane at room temperature gave unsymmetrical disulphides in excellent yields with recovery of Ph_3P .

Various methods for synthesizing unsymmetrical disulphides have been developed,^{1,2} and the difficulties in the synthesis are well documented. Among the conceivable stoicheiometries for the disulphide formation, equation (1) is one of the

$$R^{1}SSR^{1} + 2R^{2}SH \longrightarrow 2R^{1}SSR^{2} + 2H^{+}$$
(1)

most attractive routes. We have formally effected equation (1) by the reaction of electrochemically prepared alkylthio- and arylthio-triphenylphosphonium ions^{3†} (1) with thiols [equations (2) and (3)]. Although the formation of phosphonium

$$R^{1}SSR^{1} + 2Ph_{3}P \xrightarrow{-2e} 2Ph_{3}P^{+}SR^{1}$$
(2)
(1)

$$(1) + R^2SH \longrightarrow R^1SSR^2 + Ph_3P + H^+ \qquad (3)$$

ions of type (1) has been postulated in the reaction of disulphides with triphenylphosphine, their subsequent reaction with thiolate ions has been shown to give sulphides and triphenylphosphine sulphide.^{1,4}

A typical preparation of an unsymmetrical disulphide is as follows. A mixture of $Ph_3P+SMeClO_4-$ (29 mmol), c-C₆H₁₁SH (29 mmol), and Et₃N (30 mmol) in n-hexane (75 ml) was stirred for 7 h at room temperature. The crystals

Table 1. Reaction of $Ph_3P+SR^1ClO_4^-$ with $R^2SH.^a$			
R ¹	R ²	Reaction time/h	Yield of R ¹ SSR ² /% ^b
Me	PhCH ₂	2	90
Me	Furfuryl	2	87
Me	p-MeC ₆ H ₄	0.5	95
Me	Bu ⁿ	4	100
Me	But	7	77
Me	c-C ₆ H ₁₁	6	76
PhCH ₂	Bu ⁿ	3	92
Ph	Bu ⁿ	3	90

^a In n-hexane (5 ml) containing Et₃N (1.0 mmol) at room temperature: (1), 1.0 mmol; R²SH, 1.0 mmol; c-C₆H₁₁ = cyclohexyl. ^b Determined by g.l.c. on the reaction mixture without removing Ph₃P. The disulphides were characterized by elemental analysis, ¹H n.m.r., and mass spectrometry.

(Et₃NHClO₄) deposited were filtered off, and the filtrate was washed with water and dried (MgSO₄). The resulting solution, after being concentrated *in vacuo* to *ca.* 20 ml, was cooled to -20 °C. The Ph₃P deposited was filtered off, and c-C₆H₁₁SSMe was obtained by vacuum distillation (70%). Results of other smaller scale preparations are summarized in Table 1. Formation of R¹SR² was not detected at all, and the yields of other possible products, R¹SSR¹ and R²SSR², were <1%.

At present, it is not clear why the reaction of (1) with thiols proceeds as observed. However, when the reaction of (1, $R^1 = Me$) with PhCH₂SH (see Table 1) was carried out in tetrahydrofuran (THF), THF-H₂O (1:1, v/v), and methanol, the yield of PhCH₂SSMe decreased to 86, 74, and 38%,

⁺ The preparation of (1) reported in ref. 3 involves a difficult controlled-potential electrolysis in a two-compartment cell with NaClO₄ as supporting electrolyte. However, constant current electrolysis in an open beaker with HClO₄ instead of NaClO₄ has proved much easier and effective, and a large amount of (1) (>20 g) can be readily prepared in a single run.

respectively; in methanol, considerable amounts of $(PhCH_2S)_2$ and $(MeS)_2$ were formed. These findings suggest that the instability of the ion pair, $[Ph_3PSR^1]^+R^2S^-$, might be the driving force of the reaction. Such an ion pair has been suggested as the intermediate in the reaction of Ph_3P and a disulphide.¹

The present method is versatile and has advantages over the other methods reported; the phosphonium ions (1) are easy to prepare and stable, the route to the unsymmetrical disulphides requires only simple and mild conditions, and, particularly, Ph_3P is recovered and can be used repeatedly to prepare (1). *Received, 20th March 1984; Com. 378*

References

- 1 L. Field in 'Organic Chemistry of Sulfur,' ed. S. Oae, Plenum Press, New York and London, 1977, Ch. 7.
- S. Oae, Y. H. Kim, D. Fukushima, and T. Takata, *Chem. Lett.*, 1977, 893; B. Zwanenburg and P. Kielbasinski, *Tetrahedron*, 1979, **35**, 169, and references therein; M. Yoshifuji, F. Hanafusa, and N. Inamoto, *Chem. Lett.*, 1979, 723; D. N. Harpp, B. T. Friedlander, C. Larsen, K. Steliou, and A. Stockton, *J. Org. Chem.*, 1978, **43**, 3481; D. N. Harpp and R. A. Smith, *ibid.*, 1979, **44**, 4140; D. N. Harpp, D. K. Ash, and R. A. Smith, *ibid.*, 1980, **45**, 5155.
- 3 H. Ohmori, S. Nakai, M. Sekiguchi, and M. Masui, *Chem. Pharm. Bull.*, 1980, **28**, 910.
- 4 D. N. Harpp and R. A. Smith, J. Am. Chem. Soc., 1982, 104, 6045.