Chemical Communications

Number 14 1984

Characterization of Pentacarbonylvanadate(-III) and Hydridopentacarbonylvanadate(-III) by ¹³C, ⁵¹V, and ¹H N.M.R. Spectroscopy

Garry F. P. Warnock, Stephen B. Philson, and John E. Ellis*

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

N.m.r. spectra of highly reduced vanadium carbonyls containing 99% enriched ¹³CO in liquid ammonia at -50 °C provide the first direct spectroscopic evidence for the existence of Na₃[V(CO)₅] and Na₂[HV(CO)₅] in solution.

Although several mononuclear metal carbonyl trianions have been claimed in recent years, their formulations have been based only on elemental analyses, i.r. data, and derivative characterization.¹ Recently, ${}^{51}V$ (77.87 MHz) and ${}^{13}C$ (75.44 MHz) n.m.r. spectra of Na₃[V(${}^{13}CO$)₅], (1), in liquid ammonia have been obtained to clarify the nature of this unusual substance which formally contains vanadium in its lowest known oxidation state.² This n.m.r. study is particularly significant in that it provides the first direct evidence for the presence of $V(CO)_{5^{3-}}$ in solution.[†] Reduction of [Na(digly $me_{2}[V(^{13}CO)_{6}], \ddagger (2)$, by Na-NH₃ at -78 °C gave a characteristic deep red solution of Na₃[V(CO)₅].² The ⁵¹V and ¹³C n.m.r. spectra of this solution indicated that the major species present was (1) along with small amounts of (2).§ As expected for a fluxional molecule with five co-ordination, five equivalent carbonyl groups are present. Also, the highly reduced nature of (1) is evident from the large (67.8 p.p.m.) downfield shift of its ¹³C resonance from that of (2). Similarly, $Na_2[W(CO)_5]$ has recently been shown to have a ¹³C

$$\begin{array}{ccc} Na_3[V({}^{13}CO)_5] & [Na(diglyme)_2][V({}^{13}CO)_6] \\ (1) & (2) \\ \\ Na_2[HV({}^{13}CO)_5] & V({}^{13}CO)_5NH_3^- \\ (3) & (4) \end{array}$$

[†] All n.m.r. spectra reported herein were obtained for liquid NH₃ solutions at -50 °C; 51 V n.m.r. chemical shifts were calibrated relative to neat VOCl₃ at 25 °C (0 p.p.m.) and V({}^{12}CO)_{6}^{-} in liquid NH₃ at -50 °C (-1979 p.p.m.). ${}^{13}C$ N.m.r. shifts were calibrated relative to the carbon shifts of Na(diglyme)₂⁺ in NH₃ at -50 °C and those of Na(diglyme)₂⁺ and Me₄Si (0 p.p.m.) in [{}^{2}H_{6}]acetone at -50 °C. Diglyme = bis(2-methoxyethyl) ether.

‡ Compound (2) was prepared by a recently developed reductive carbonylation of VCl₃ (ref. 3) in the presence of 99% ¹³CO. I.r. (MeCN) v(CO) 1818 cm⁻¹ [calculated v(¹³CO) 1819 cm⁻¹ based on the observed v(¹²CO) of 1860 cm⁻¹ for V(¹²CO)₆⁻]. N.m.r. in NH₃: ⁵¹V, δ –1981 p.p.m. [binomial septet, *J*(V–C) 116 Hz]; ¹³C, δ 224.2 [octet, *J*(V–C) 116 Hz].

§ N.m.r. data for (1) in NH₃: ⁵¹V, δ –1965 p.p.m. [binomial sextet, J(V–C) 139 Hz]; ¹³C, δ 290.1 p.p.m. [octet, J(V–C) 139 Hz].

resonance (δ 247.4, singlet in tetrahydrofuran) which is 55 p.p.m. downfield from the W(CO)₆ absorption.⁴ To our knowledge, the ¹³C resonance of (1) is the most positive chemical shift yet observed for a terminal metal carbonyl group.

Treatment of liquid NH₃ solutions of (1) with one equiv. of ethanol at -50 °C caused reduction in the intensity of signals attributed to the trianion. New absorptions due to Na₂[HV(¹³CO)₅], (3), appeared.¶ The ⁵¹V and ¹³C{¹H}

Figure 1. The ⁵¹V n.m.r. spectrum of Na₃[V(¹³CO)₅] (δ -1965 p.p.m.), Na[V(¹³CO)₆] (δ -1981 p.p.m.), and Na₂[HV(¹³CO)₅] (δ -1988 p.p.m.) in NH₃ at -50 °C. The satellites in the spectrum of V(CO)₆⁻ and HV(CO)₅²⁻ are due to *ca.* 10 mol % of co-ordinated ¹³C¹⁸O.

[¶] N.m.r. data for (3) in NH₃: ⁵¹V{¹H}, δ –1988 p.p.m. [binomial sextet, J(V-C) 124.5 Hz]; ⁵¹V, δ –1988 p.p.m. [sextet of doublets, J(V-C) 124.5, J(V-H) 27.6 Hz]; ¹³C{¹H}, δ 250.3 [octet, J(V-C) 124.5 Hz]. In another study [Et₄N]₂[HV(CO)₅] was isolated as a yellow crystalline substance which provided satisfactory elemental analyses for this formulation (ref. 5). Compound (3) appears to be unstable above 0 °C in solution or in the solid state.

Figure 2. The ${}^{13}C{}^{1}H$ n.m.r. spectrum of Na₃[V(${}^{13}CO$)₅] (δ 290.1), Na₂[HV(${}^{13}CO$)₅] (δ 250.3), and Na[V(${}^{13}CO$)₆] (δ 224.2) in NH₃ at -50 °C.

n.m.r. spectra (Figures 1 and 2, respectively) established the presence of (1), (2), and (3) in this solution. The resonances due to these species in the ¹³C n.m.r. spectrum were unambiguously identified on the basis of their respective ${}^{51}V{-}^{13}C$ coupling constants. Confirmation of the hydridic and mononuclear nature of (3) was provided by its ¹H n.m.r. spectrum (300 MHz) in NH₃ at -50 °C: δ -4.78 [partially overlapped sextet of octets, $J(V{-}H)$ 27.7, $J(C{-}H)$ 10.8 Hz]. From the ${}^{51}V$, ${}^{13}C$, and ¹H n.m.r. spectra of (3), it is evident that the vanadium and hydrogen atoms are coupled to five equivalent carbon atoms at -50 °C in liquid NH₃. In this respect, the vanadium hydride resembles the isoelectronic chromium monoanion, $HCr(CO)_5^-$, which appears to be fluxional at 25 °C in acetonitrile.⁶

When the ammoniacal solution of (1) and (3) was treated

with another equivalent of ethanol, n.m.r. absorptions due to these substances decreased in intensity while those due to a purple anion, V(^{13}CO)₅NH₃⁻, (4) appeared and grew in intensity.** It is noteworthy that during this multinuclear n.m.r. study of the protonation of V(^{13}CO)₅³⁻ in liquid ammonia, only the trianion, HV(^{13}CO)₅²⁻, V(^{13}CO)₅NH₃⁻, and small amounts of V(^{13}CO)₆⁻ have been observed. At present, there is no evidence for the formation of other plausible carbonylvanadium species such as H₂V(CO)₅⁻, H₃V(CO)₅, V₂(CO)₁₀⁴⁻, or HV₂(CO)₁₀³⁻ in this system.

We thank the National Science Foundation and the Petroleum Research Fund administered by the American Chemical Society for financial support, Professor N. John Cooper for a preprint of the paper cited in ref. 4, and Professor Robert G. Bryant for helpful discussions.

Received, 10th April 1984; Com. 519

References

- 1 G. F. P. Warnock, J. Sprague, K. L. Fjare, and J. E. Ellis, J. Am. Chem. Soc., 1983, 105, 672, and references cited therein.
- 2 J. E. Ellis, K. L. Fjare, and T. G. Hayes, J. Am. Chem. Soc., 1981, 103, 6100.
- 3 F. Calderazzo and G. Pampaloni, J. Organomet. Chem., 1983, 250, C33.
- 4 R. P. Beatty, J. M. Maher, and N. J. Cooper, J. Am. Chem. Soc., in the press.
- 5 G. F. P. Warnock and J. E. Ellis, manuscript in preparation.
- 6 M. Y. Darensbourg and S. Slater, J. Am. Chem. Soc., 1981, 103, 5914.

** N.m.r. data for (4) in NH₃: 51 V, $\delta -1605$ p.p.m. [br. binomial sextet, J(V-C) 122.4 Hz]; 13 C{¹H}, δ 225.3 [unresolved octet, J(V-C) ca. 121 Hz]. Addition of a stronger acid, such as NH₄Cl, caused signals due to (1) and (3) to completely disappear and provided mainly $V(CO)_5$ NH₃⁻ and small amounts of $V(CO)_6^-$. The ammine compound has been isolated previously from similar reactions as the Ph₄As⁺ salt (ref. 2).