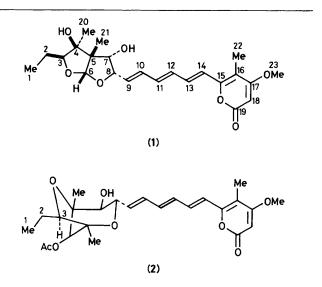
Biosynthesis of Asteltoxin by Cultures of *Emericella variecolor*. The Role of Propionate in the Biosynthesis and Evidence for a 1,2-Bond Migration in the Formation of the Bistetrahydrofuran Moiety


Pieter S. Steyn and Robert Vleggaar*

National Chemical Research Laboratory, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, Republic of South Africa

The incorporation of $[1-1^{3}C]$ propionate, $(2S)-[methyl-1^{3}C]$ methionine, and $[1,2-1^{3}C_{2}]$ acetate into asteltoxin by cultures of *Emericella variecolor* point to the operation of two biosynthetic pathways; the arrangement of intact acetate units in asteltoxin derived from $[1,2-1^{3}C_{2}]$ acetate proves that a 1,2-bond migration occurs during the biosynthesis.

Investigations of toxic maize cultures of Aspergillus stellatus Curzi, \dagger strain MRC 641 led to the isolation of asteltoxin (1).² a potent inhibitor of bacterial ATPase,³ structurally related to citreoviridin⁴ and aurovertin B (2).⁵ Extensive incorporation studies with ¹³C-labelled precursors have revealed the simultaneous operation of two apparently independent pathways (A and B), distinguishable by the different origins of C-1—C-3, in the biosynthesis of aurovertin B (2).⁶ Pathway A involves the C-methylation of a C_{20} -polyketide precursor at C-18, followed by the loss of the chain-initiating acetate unit, C-19-C-20, and C-1 in aurovertin B is thus derived from methionine and C-2 and C-3 from malonate. In contrast, pathway B involves a C₁₉-precursor, formed from a propionate chain-initiating unit and eight malonate units; C-1---C-3 are thus derived from propionate.⁶ These results prompted us to investigate the biosynthesis of asteltoxin (1) as, in addition to the above two possible biosynthetic pathways, a rearrangement of the polyketide chain must be invoked to explain the formation of the bistetrahydrofuran moiety.

The ¹H and ¹³C n.m.r. data for asteltoxin (1) are collated in Table 1. First-order analysis of the multiplets in the ¹H n.m.r. spectrum of asteltoxin yielded the values of the proton chemical shifts and proton-proton coupling constants. From the value of the coupling constants as corroborated by ¹H{¹H} homonuclear decoupling experiments the proton-proton connectivity pattern could be constituted. The residual (C,H) splittings observed in a series of off-resonance proton-

decoupled ¹³C n.m.r. experiments enabled us to correlate the signals of the proton-bearing carbon atoms with specific proton resonances.⁷ In the assignment of the different ¹³C resonances use was made of chemical shift values of the related compounds, aurovertin⁶ and citreoviridin,⁸ (C,H) coupling constants, and heteronuclear ¹³C{¹H} selective population inversion⁹ experiments. The detailed ¹H and ¹³C n.m.r. study will be described in a subsequent publication.

Cultures of *Emericella variecolor*, strain NHL 2881 were grown on a malt extract medium (15%). Studies on the course of fermentation indicated that asteltoxin production commenced on day 8 and reached a level of 60—80 mg l⁻¹ after 25

[†] Aspergillus stellatus Curzi is synonymous with Aspergillus variecolor (Berk. and Br.) Thom and Raper, the imperfect state of *Emericella* variecolor Berk. and Br. (ref. 1).

Carbon					
atom	$\delta_{C^{b}}$	¹ J(CH)/Hz	¹ J(CC)/Hz ^c	$\delta_{H}{}^{d}$	¹J(HH)/Hz
1	11.71 O ∆	122.6		0.956 t	7.5
2	22.47 T	126.0	40.9	1.542 ddq	13.8, 9.1, 7.5
				1.480 ddq	13.8, 3.5, 7.5
3	90.10 D •	141.6	40.7	4.312 dd	9.1, 3.6
3 4 5	80.93 S		—		
	62.60 S		37.0		
6	112.98 D •	176.7	_	5.152 s	
7	80.19 D •	151.6	37.0	3.815 dd	5.6, 3.1
8 9	84.80 D	145.3	51.8	4.634 ddd	6.6, 3.2, 1.3
	133.84 D •	157	51.7	6.035 dd	15.2, 6.6
10	133.20 D	156	56.2	6.460 ddd	15.3, 10.8, 1.3
11	137.95 D 🔹	156	56.4	6.644 dd br	14.8, 10.8
12	132.58 D	155	57.4	6.499 dd br	14.7, 11.0
13	135.68 D •	155	57.1	7.063 dd	15.0, 11.0
14	120.93 D	159.1	69.5	6.614 d	15.0
15	154.80 S •		69.5		
16	108.72 S		61.3		
17	171.06 S 🔹		61.7		
18	89.42 D	168.5	78.4	5.603 s	
19	162.79 S •		78.3		
20	18.38 Q 🛆	127.6		1.350 s	
21	16.55 Q ∆	126.2		1.165 s	
22	8.97 Q ∆	128.9		1.970 s	
23	56.91 Q 🛆	146.6		3.896 s	

Table 1. ¹H (500.13 MHz) and ¹³C (125.76 MHz) n.m.r. data for asteltoxin.^a

^a Recorded on a Bruker WM-500 spectrometer; solvent $(CD_3)_2CO$. ^b Relative to Me₄Si. Capital letters refer to the pattern resulting from directly bonded (C,H) couplings. S = singlet, D = doublet, T = triplet, and Q = quartet. • = enriched by $[1^{-13}C]$ acetate; \triangle = enriched by (2S)-[methyl-¹³C]methionine. ^c Value obtained from the broad-band proton-decoupled spectrum of asteltoxin derived from $[1,2^{-13}C_2]$ acetate. ^d Relative to internal Me₄Si. s = singlet, d = doublet, t = triplet, q = quartet, and br = broad. The proton of the C-7 hydroxy group appears as a doublet (J 5.6 Hz) at δ 3.937.

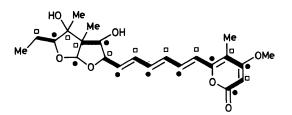


Figure 1. Arrangement of intact acetate units in asteltoxin (1) (\bullet corresponds to C-1 and \Box to C-2 of acetate).

days. Preliminary feeding experiments with $[1-{}^{14}C]$ acetate as precursor established that high but satisfactory dilution values⁶ (200.5, assuming nine labelled positions) were obtained by feeding cultures of *E. variecolor* every 24 h from day 6 to day 24 with sodium acetate to a total amount of 2.5 g l⁻¹.

The broad-band proton-decoupled ¹³C n.m.r. spectrum of asteltoxin derived from [1-13C]acetate (91.6 atom % ¹³C) showed nine enhanced signals (average enrichment factor⁶ 1.5) attributed to C-3, C-6, C-7, C-9, C-11, C-13, C-15, C-17, and C-19 and pointed to the involvement of nine acetate units in the formation of the metabolite. The arrangement of intact acetate units in asteltoxin was studied by addition of [1,2- $^{13}C_2$ acetate to cultures of *E. variecolor*. The broad-band proton-decoupled ¹³C n.m.r. spectrum of the enriched asteltoxin exhibited, as a result of multiple labelling, one bond (C,C) coupling between carbon atoms derived from adjacent acetate units (interacetate coupling), in addition to the expected spin-spin coupling between carbon atoms derived from intact acetate units (intra-acetate coupling). The intraacetate (C,C) couplings could be distinguished readily by their greater (5-fold) intensities. The measured ${}^{1}J(CC)$ values of these couplings are given in Table 1 and prove the presence of eight intact acetate units arranged as shown in Figure 1: C-2-C-3, C-5-C-7, C-8-C-9, C-10-C-11, C-12-C-13, C-14-C-15, C-16-C-17, and C-18-C-19. The additional much lower intensity one-bond (C,C) couplings observed for the C-3 (38.0 Hz), C-7 (37.0 Hz), and C-6 (35.2 Hz) resonances are ascribed to interacetate coupling with C-4, C-8, and C-5, respectively. The results indicate that a 1,2-shift of the C-16 carbon atom from C-15 to C-14 of a C₂₀- or C₁₈-polyketide precursor occurs in the course of the biosynthesis. In this 1,2-bond migration an intact acetate unit is cleaved in a pinacol or epoxide rearrangement to generate a branched aldehyde which is subsequently utilised in the formation of the bistetrahydrofuran moiety.

The above results, obtained from feeding experiments using ¹³C-labelled acetate, account for the origin of 18 of the 23 carbon atoms of asteltoxin. On feeding (2*S*)-[*methyl*-¹³C]methionine (420 mg, 90 atom % ¹³C), containing (2*S*)-[*methyl*-¹⁴C]methionine (50 μ Ci) as a tracer, asteltoxin with a specific activity of 3.23 μ Ci mmol⁻¹ was obtained. This result indicates a dilution value of 27.2 (assuming the presence of 5 labels) and thus an enrichment factor of 3.9. The broad-band proton-decoupled ¹³C n.m.r. spectrum of the metabolite showed enhancement of the signals attributed to C-1, C-20, C-21, C-22, and C-23.

The incorporation of $[2^{-13}C]$ acetate (91.0 atom % ^{13}C) into asteltoxin was subject to a too high dilution value as no reliable enhancement factors⁶ were obtained from the protondecoupled ^{13}C n.m.r. spectrum of the enriched asteltoxin. However, a number of resonances exhibited low intensity satellite signals due to one-bond (C,C) coupling. Analysis of the one-bond (C,C) coupling constants indicated the presence of eight intact acetate units with an arrangement identical to that observed in $[1,2^{-13}C_2]$ acetate-derived asteltoxin. In addition the spectrum revealed one-bond interacetate (C,C) couplings for C-4 (38.3 Hz) and C-6 (35.4 Hz) which probably arise from coupling in each case with C-5. It is evident that some $[1,2^{-13}C_2]$ acetate is formed during the fermentation by the frequent recycling of $[2^{-13}C]$ acetate in the Krebs citric acid cycle. A similar phenomenon was observed in the biosynthesis of penitrem A.¹⁰

The origin of C-1–C-3, as in the case of aurovertin B (2),⁶ from acetate and methionine, indicates that asteltoxin is formed by pathway A outlined above. The possible involvement of propionate in the biosynthesis of asteltoxin (pathway B) was investigated by administration of $[1^{-14}C]$ propionate (430 mg, specific activity 11.29 µCi mmol⁻¹) to growing cultures of *E. variecolor*, to give asteltoxin (26 mg, specific activity 0.76 µCi mmol⁻¹). The low dilution value of 14.9 (assuming one labelled position) indicates that high enrichment can be obtained in studies with ¹³C-labelled propionate. In the broad-band proton-decoupled ¹³C n.m.r. spectrum of asteltoxin derived from $[1^{-13}C]$ propionate (430 mg, 93.2 atom % ¹³C) only the signal assigned to C-3 (δ 90.10) was enhanced (enrichment factor 5.4).

The results indicate that asteltoxin can be formed *via* two biosynthetic pathways which are distinguishable by the different origins of C-1–C-3. An alternative explanation, for which there is no precedent, and which involves the formation of propionyl-CoA by methylation at C-2 of malonyl-CoA and subsequent decarboxylation, is under investigation.

The authors thank Dr. Y. Maebayashi, Chiba University,

Japan, for a culture of *Emericella variecolor* and Dr A. E. de Jesus for microbiological assistance.

Received, 25th April 1984; Com. 570

References

- 1 K. B. Raper and D. I. Fennel, 'The Genus Aspergillus,' The Williams and Wilkins Company, Baltimore, 1965, p. 514.
- 2 G. J. Kruger, P. S. Steyn, R. Vleggaar, and C. J. Rabie, J. Chem. Soc., Chem. Commun., 1979, 441.
- 3 M. Satre, Biochem. Biophys. Res. Commun., 1981, 100, 267.
- 4 N. Sakabe, T. Goto, and Y. Hirata, *Tetrahedron Lett.*, 1964, 1825;
 D. W. Nagel, P. S. Steyn, and D. B. Scott, *Phytochemistry*, 1972, 11, 627.
- 5 L. J. Mulheirn, R. B. Beechey, D. P. Leworthy, and M. D. Osselton, J. Chem. Soc., Chem. Commun., 1974, 874.
- 6 P. S. Steyn, R. Vleggaar, and P. L. Wessels, J. Chem. Soc., Perkin Trans. 1, 1981, 1298.
- 7 K. G. R. Pachler, J. Magn. Reson., 1972, 7, 442; K. G. R. Pachler, P. L. Wessels, J. Dekker, J. J. Dekker, and T. G. Dekker, Tetrahedron Lett., 1976, 3059.
- 8 P. S. Steyn, R. Vleggaar, P. L. Wessels, and M. Woudenberg, J. Chem. Soc., Perkin Trans. 1, 1982, 2175.
- 9 K. G. R. Pachler and P. L. Wessels, J. Magn. Reson., 1973, 12, 337; 1977, 28, 53.
- 10 A. E. de Jesus, W. E. Hull, P. S. Steyn, F. R. van Heerden, R. Vleggaar, and P. L. Wessels, J. Chem. Soc., Chem. Commun., 1982, 837; A. E. de Jesus, C. P. Gorst-Allman, P. S. Steyn, F. R. van Heerden, R. Vleggaar, P. L. Wessels, and W. E. Hull, J. Chem. Soc., Perkin Trans. 1, 1983, 1863.