1024

Diffusion of Large Amine Ligands into Layered α -Zr(HPO₄)₂·H₂O. Access to a Solid-state Co-ordination Chemistry

Carla Ferragina,^a Maria Massucci,^a Aldo La Ginestra,^a Pasquale Patrono,^a and Anthony A. G. Tomlinson*^b ^aI.M.A.I. and ^b I.T.S.E., Area della Ricerca di Roma del C.N.R., C.P.10, Monterotondo Stazione, 00016 Roma, Italy

2,2'-Bipyridyl and 1,10-phenanthroline can be diffused between the layers of pre-swelled α -Zr(HPO₄)₂·2H₂O to give the materials α -Zr(HPO₄)₂[bipy]_{0.25}·1.5H₂O and α -Zr(HPO₄)₂[phen]_{0.5}·2H₂O; metal ions co-ordinate preferentially to the stage I dispersed ligand with *in situ* formation of complex pillars.

Supported complexes are basically of two kinds: those in which the metal ion bonds directly to the matrix,¹ and those where it co-ordinates to a ligand itself attached to a matrix $(e.g. silica, alumina, etc.)^2$. We have found that a relatively bulky amine can be dispersed into a layered material and the 'ligand-pillared' phase thus formed preferentially co-ordinates transition metal ions *in situ*. These constitute a third class: organic–inorganic composite supports.

 α -Zr(HPO₄)₂·H₂O Contacting α -Zr(NaPO₄)or (HPO_4) ·5H₂O with 10⁻²-10⁻³ mol dm⁻³ solutions of bipy (2,2'-bipyridyl) or phen (1,10-phenanthroline) in waterethanol (1:1) leads to materials with only low (<3% molar) loading levels (presumably because of steric effects). Conversely, when the metastable alcohol phases, e.g. α -Zr(PO₄)₂-[2EtOH],³ are contacted with the same solutions, the layer swelling caused by intercalation of the alcohol (known to form a bilayer between the layers³) is sufficient to allow almost immediate uptake of organic amine. Maximum uptake of the amine is reached after 24 h contacting time and after filtering off and drying in air the materials analysed[†] as α -Zr(HPO₄)₂[bipyl]_{0.25}·1.5H₂O and α -Zr(HPO₄)₂-[phen]_{0.25}·2H₂O. No further ligand could be diffused. Both materials are pure stage I phases, but show very different interlayer distances: 10.9 (bipy) and 13.58 Å (phen). Neither amine lies flat between the layers (an interlayer distance of ca. 9.6 Å would be expected were the amines flat). Dreiding

[†] Satisfactory analyses (via thermogravimetry, monitoring of absorption spectra of supernatants during uptake, and metal analyses after calcination of materials) were obtained for all materials.

Figure 1. X-Ray diffraction patterns of (a) α -Zr(HPO₄)₂-[bipy]_{0.25}·1.5H₂O; (b) α -Zr(HPO₄)₂[phen]_{0.5}·2H₂O; (c) α -ZrH_{1.5}[Cu-(bipy)]_{0.25}(PO₄)₂·3.15H₂O; (d) α -ZrH[Cu(phen)]_{0.5}(PO₄)₂·2H₂O. The predominant low-angle d_{002} reflexion is characteristic of stage I behaviour, *i.e.* the amine ligand is ordered throughout each layer of the material.

Figure 2. E.s.r. spectra: (i) 2% Cu²⁺-exchanged α -Zr(PO₄)₂-[phen]_{0.5}·H₂O; (ii) α -ZrH[Cu(phen)]_{0.5}(PO₄)₂·2H₂O; (iii) as for (ii), after heating material at 140 °C for 2 h. dpph = diphenylpicryl-hydrazyl.

models indicate that the bipy is somewhat sidewise slanted to the layers, whereas phen is almost vertical. The former would give a larger coverage of the basal units of the parent α -Zr(HPO₄)₂·H₂O structure than would the latter, which accounts for the difference in maximum loading levels. The water molecules are zeolitic in type (ready removal at 110 °C), are readily regained (within minutes), and their removal does not cause the structure to collapse.

These solid-state dispersed ligands co-ordinate metal ions. A solution of Cu^{2+} [10^{-3} mol dm⁻³ Cu(OAc)₂] in contact with them (1 : 1 molar ratio, referred to ligand) is completely taken up (bipy: 24 min; phen: 7 days) giving bright blue materials analysing as α -ZrH_{1.5}[Cu(bipy)]_{0.25}(PO₄)₂·3.15H₂O (A) and α -ZrH[Cu(phen)]_{0.5}(PO₄)₂·2H₂O (B). Co-ordination causes

reorientation of the ligand between the layers: $d_{002}(A) = 13.05 \text{ Å}$; $d_{002}(B) = 15.2 \text{ Å}$. Powder diffraction patterns for the phen and bipy species, with and without Cu²⁺, are in Figure 1, The presence of fine structure in the e.s.r.spectra characteristic of N-co-ordination (Figure 2) demonstrates that the Cu²⁺ is indeed co-ordinated to the amine in both cases,⁴ and not simply exchanged into the cavities formed by the ligand-pillaring. The same is found for the Co²⁺ and Ni²⁺ analogues. For α -ZrH_{1.5}[Ni(bipy)]_{0.25}(PO₄)₂·3.15H₂O, the electronic spectrum is characteristic of a *cis*-NiN₂O₄ chromophore (v₁ 9 100 and 10 750; v₂ 16 500; v₃ 26 500 cm⁻¹).⁵

On dehydration, the metal ion anchors more strongly to both ligand and matrix, giving $(P-O)_n M(N-N)$ moieties. The number *n* is variable, presumably because of contraints on the metal ion due to ligand orientation within the layer and the influence this has on availability of matrix oxygen atoms. In α -ZrH_{1.5}[Co(bipy)]_{0.25} (PO₄)₂, the Co²⁺ is tetrahedral in gross geometry (electronic spectrum: v₂ 5 750, 7 250, and 8 850; v₃ 16 080, 17 700, and 20 200 cm⁻¹). Conversely, the Cu²⁺ analogue adopts a tetragonal octahedral metal ion geometry. The rigidity of phen within the layers imposes a distorted tetrahedral geometry on the (matrix + ligand)-co-ordinated Cu²⁺ in α -ZrH[Cu(phen)]_{0.5}(PO₄)₂ (see Figure 2), as deduced from the very low A_{ii} value of *ca.* 35 G.⁴

The layer swelling technique for inserting large molecules into α -Zr(HPO₄)₂·H₂O and similar materials is general in application, and the solid-state dispersed ligand species obtained can be used for developing an intercalation coordination chemistry.

Received, 30th May 1984; Com. 631

References

- T. J. Thomas, D. E. Hucul, and A. Brenner, in 'Chemically Modified Surfaces in Catalysis and Electrocatalysis,' ACS Symposium Series, 1982, Vol. 192, p. 267.
- 2 D. C. Bailey and S. H. Langer, Chem. Rev., 1981, 81, 109.
- 3 U. Costantino, J. Chem. Soc., Dalton Trans., 1979, 402.
- 4 J. Foley, S. Tyagi, and B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1984, 1; D. Attanasio, A. A. G. Tomlinson, and L. Alagna, J. Chem. Soc., Chem. Commun., 1977, 618.
- 5 Compare with metal-ion exchanged parent α-Zr(PO₄)₂.H₂O: L. Alagna, A. A. G. Tomlinson, C. Ferragina, and A. La Ginestra, J. *Chem. Soc.*, *Dalton Trans.*, 1981, 2376.