Non-chelation-control in Nucleophilic Additions to Chiral α- and β-Alkoxy Aldehydes

Manfred T. Reetz* and Kurt Kesseler

Fachbereich Chemie der Universität, Hans-Meerwein-Strasse, 3550 Marburg, Federal Republic of Germany

The addition of two equivalents of gaseous BF_3 to α - and β -alkoxy aldehydes having a centre of chirality at the α -position leads to doubly complexed species which react diastereoselectively with silyl enol ethers and allylsilanes to provide non-chelation-controlled adducts.

We recently reported high levels of 1,2- and 1,3-asymmetric induction in Grignard- and aldol-type additions to chiral *a*and β -alkoxy aldehydes and ketones. 1.2 In the case of α -alkoxy aldehydes chelation-controlled products³ dominate if Lewis acid reagents such as $MericCl₃$ or TiCl₄ in combination with R2Zn, allylsilanes, or enol silanes are used. They react *via* 5-membered chelates in which titanium is 6-co-ordinate (octahedral). In contrast, non-co-ordinating analogues¹ $RTi(OCHMe₂)$ ₃ afford Felkin-Anh products.⁴ Generally, such non-chelation-control is more difficult to attain.⁵ The present communication describes new approaches to the latter problem.³

We speculated that double complexation of chiral *a-* and (3-alkoxy aldehydes using Lewis acids *incapable* of bis-ligation $(e.g., BF_3)$ could result in adducts $(1), (2),$ and $(3),$ which might be expected to have a rigid conformation due to electrostatic repulsion. They should then react with nucleophiles from the less hindered diastereotopic π -face. Inspection of **(1)** and the TiC14-chelated form of the aldehyde (not shown here) shows that in both cases the *same* diastereotopic face is exposed. In fact, **(1)** has been shown to 'simulate' chelation.' However, **(2)** and **(3)** are different. The present operational model⁺ predicts non-chelation-control (Felkin-Anh products) for both intermediates. Indeed, treating **(2)** (made by reacting the aldehyde with an excess of gaseous BF_3 in CH_2Cl_2 at -95 $C/5$ min) with the silyl enol ether **(4)** $(-95 \degree C/60 \text{ min})$ resulted in a 90 : 10 ratio of **(7a)** : **(8a).** This contrasts to the *<5* : >95 distribution obtained in chelation-control *via* TiCl₄.¹ Similarly, *(5)* and **(6)** afforded 84 : 16 and 80 : 20 ratios of **(7b)** : **(8b)**

t Other models also explain the results, e.g. Felkin-Anh conformations in which $\pi_{C=O}^*-\sigma_{C-OR}^*$ conjugation is important. On the basis of molecular models, folded conformations in which Coulombic *attraction* (ref. 1) is dominant, appear less likely.

and **(7c)**: **(8c)**, respectively. Again, this is reversal of diastereoselectivity , the TiC14-promoted reaction affording almost exclusively **(8b,c)**.¹ In all cases conversion is >85%.

The doubly complexed α -chiral β -alkoxy aldehyde (3) also shows significant levels of non-chelation-control in reactions with **(4)** and **(6).** The reason for stereorandomness in the case of (5) is unclear. We have also tested the use of BF_3 -diethyl ether in CH_2Cl_2 , but stereoselectivities are poor [e.g., $(7b):(8b) = 65:35; (7c):(8c) = 65:35; (9a):(10a) =$ $77:23$. As with α -alkoxy aldehydes, β -alkoxy derivatives show opposite stereoselectivity depending upon whether simple BF_3 -addition or TiCl₄-chelation is used. Thus, chelation of β -benzyloxy- α -methylpropanal [the free aldehyde corresponding to (3)] with TiCl_4 at -78 °C followed by addition of **(4),** *(5),* or **(6)** at that temperature results in complete reversal of diastereoselectivity $\overline{(\mathbf{9a})}$: $(\mathbf{10a}) = 5 : 95$; $(9b)$: $(10b) = \langle 3 : \rangle 97$; $(9c) : (10c) = 17 : 83$. In all cases conversion is *>85%.*

In a second approach to non-chelation-control, we performed a fluoride ion induced aldol addition6 of **(1 1)** and **(12).** Remarkably, of the four possible diastereoisomers, only two are formed $[(13) : (14) = 82 : 18]$. Compound $(13)\neq$ is the Felkin-Anh product (non-chelation-controlled) in which the relative stereochemistry at the two new chiral centres is *syn* (simple diastereoselectivity7). The minor isomer **(14)\$** represents formal chelation-control, simple diastereoselectivity being *syn.* Apparently, the intermediate ammonium enolates, whatever their precise structure may be,⁶ are incapable of

^{(4)&}lt;br> \ddagger Non-chelation-control is also observed

titanium enolate corresponding to (1)

although a definitive assignment regardin

(ref. 7) was not made (ref. 1). We now

arbitrarily assumed (ref. 1), but *syn*

Heathco \ddagger Non-chelation-control is also observed by using the tri-isopropoxytitanium enolate corresponding to **(12)** as previously reported, although a definitive assignment regarding simple diastereoselectivity (ref. **7)** was not made (ref. 1). We now report that it is not *anti* as arbitrarily assumed (ref. l), but *syn* as shown in **(13).** One of Heathcock's aldol adducts [prepared by adding the lithium enolate of **2-methyl-2-(trimethyIsiloxy)pentan-3-one** to **(11)** according to C. H. Heathcock, **S.** D. Young, J. **P.** Hagen, **M.** C. Pirrung, C. T. White, and D. Van Derveer, *J. Org. Chem.,* 1980, **45, 38461** was correlated chemically with **(13)** by the following sequence: protection of the HO-group by tetrahydropyran- H^+ , addition of two equivalents of phenyl-lithium, and oxidative cleavage and deprotection using $H₅IO₆$ -MeOH. The structure of (14) was assigned by an analoguous sequence as well as by X -ray crystallography.

chelation, so that the Felkin-Anh model applies. **8** Adding **(12)** to (11)/TiCl4 results in opposite stereoselectivity **[3** : 97 ratio of

9 We emphasize that such explanations are simply working hypotheses. Low temperatures and short reaction times are necessary, otherwise equilibration due to the reversibility of such reactions (ref. 6) occurs. Commercial tetra-n-butylammonium fluoride in tetrahydrofuran was dried using $CaH₂$; the precise nature of the fluoride is not known, formation of HF2- being possible (R. K. Sharma and J. **L.** Fry, J. *Org. Chem.,* 1983, 48,2112).

 (13) : (14)].¹ It is interesting to note that the corresponding lithium enolate at -78 °C delivers a mixture of 60% (13), 10% **(14),** and 30% of another diastereoisomer, whereas the zinc enolate affords all four isomers.

This work was supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft.

Received, 9th May 1984; Com. 639

References

- 1 M. T. Reetz, K. Kesseler, **S.** Schmidtberger, B. Wenderoth, and R. Steinbach, *Angew. Chem., Int. Ed. Engl.*, 1983, 22, 989; *Angew. Chern. Suppl.,* 1983, 1511; M. T. Reetz, K. Kesseler, and A. Jung, *Tetrahedron Lett.,* 1984, 729.
- 2 M. T. Reetz and **A.** Jung, J. *Am. Chem. Soc.,* 1983, **105,** 4833.
- 3 Review: M. T. Reetz, *Angew. Chern., Int. Ed. Engl.,* in the press.
- 4 N. T. Anh, *Top. Curr. Chem.,* 1980, 88, 40; for recent cases of Felkin-Anh products in carbohydrate chemistry, see R. W. Hoffmann, A. Endesfelder, and H.-J. Zeiss, *Carbohydr. Res.,* 1983, **123,** 320; Y. Yamamoto and K. Maruyama, *Heterocycles,* 1982, **18,** 357; W. R. Roush, D. J. Harris, and B. M. Lesur, *Tetrahedron Lett.,* 1983, 2227; C. H. Heathcock, in 'Asymmetric Synthesis,' ed. J. D. Morrison, Vol. 2, Academic Press, New York, in the press; C. Fuganti, P. Grasseli, and G. Pedrocchi-Fantoni, *J. Org. Chem.,* 1983,48,909; F. Tabusa, T. Yamada, K. Suzuki, and T. Mukaiyama, *Chern. Lett.,* 1984, 405; and references cited in these publications.
- 5 Lewis acids other than TiCl₄ have been used to attain chelationcontrol: **S.** Kiyooka and C. H. Heathcock, *Tetrahedron Lett.,* 1983, 4765; for related approaches to chelation- and non-chelationcontrol, see G. E. Keck and E. P. Boden, *Tetrahedron Lett.,* 1984, 265.
- **b** E. Nakamura, M. Shimizu, J. Kuwajima, J. Sakata, K. Yokoyama, and R. Noyori, J. *Org. Chem.,* 1983, 48, 932.
- 7 C. H. Heathcock and L. **A.** Flippin, *J. Am. Chern. SOC.,* 1983, **105,** 1667.