The Synthesis and Reactions of an Anionic Tungsten-Carbyne Complex Stabilised by the Carbaborane Ligand 1,2-C₂B₉H₉Me₂; Evidence for a Novel Cage Hydroboration **Reaction**

Michael Green, Judith A. K. Howard, Alun P. James, Christine M. Nunn, and F. Gordon A. Stone *Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 ITS, U. K.*

The salt $[N(PPh_3)_2][W(\equiv CR)(CO)_2(\eta^{5-1}, 2-C_2B_9H_9Me_2)]$ (R = C₆H₄Me-4) reacts with the compounds $[RhCl(PPh_3)_3]$. $[Rh(PPh₃)₂(diene)][BF₄]$ (diene = cyclo-octa-1,5-diene or norbornadiene), and $[AuCl(PPh₃)]$ to give products with tungsten-rhodium or tungsten-gold bonds, the structures of which were determined by X-ray diffraction; that from the norbornadiene complex contains a nortricyclane moiety bonded to a boron atom of the C_2B_9 cage.

The synthesis of the iron complex $[Fe(1, 2-C_2B_9H_{11})_2]^{2-}$ and the recognition of the structural relationship between this species and ferrocene led to the development of metallacarbaborane chemistry.' There is evidence2 to suggest that the electron donor ability and steric requirements of the *nido-* $C_2B_9H_{11}^2$ anion are similar to those of η -C₅Me₅, although the notional replacement of a cyclopentadienyl ligand in a metal complex by the carbaborane cage places a negative charge on any resultant compound. There is thus an isolobal relationship between the groups $W(CO)₂(\eta-C₅R'_{5})$ and $W(CO)₂(\eta-C₅R'_{5})$ $C_2B_9H_9R'_2$ (R' = H or Me) suggesting³ that salts of the anion $[W(\equiv CR)(CO)_2(\eta - C_2B_9H_9Me_2)]$ might be prepared. It was anticipated that the carbaborane ligand would focus electron density on the tungsten centre, resulting in the carbyne-metal species undergoing unusual reactions.

The compound $\text{Na}_2[7,8\text{-}C_2\text{B}_9\text{H}_9\text{Me}_2]^4$ in tetrahydrofuran (thf) reacts with $[\widetilde{W}(\equiv CR)Br(CO)_4]$ $(R = C_6H_4Me^{-4})^5$ $(-40 \degree C,$ warming to room temperature) with CO evolution. Addition of $[N(\overline{PPh}_3)_2]$ Cl gives an orange salt (1) , spectroscopic data? for which are in accord with the formulation

$[N(PPh₃)₂][W(=CR)(CO)₂(\eta-1,2-C₂B₉H₉Me₂)]$ **(1)** $[(\eta$ -C₂B₉H₉Me₂)(OC)W(μ -CR)(μ -CO)Rh(PPh₃)₂] (2) $[\{\eta - C_2B_9(C_7H_9)H_8Me_2\}({\rm OC})\dot{W}(\mu-CR)(\mu-CO)\dot{R}h(PPh_3)_2]$ (3) $[(\eta - C_2B_9H_9Me_2)(OC)_2W(\mu-CR)Au(PPh_3)]$ (4) $R = C_6H_4Me-4$

proposed. Treatment of dichloromethane solutions of **(1)** with either $[RhCl(PPh₃)₃]$ or $[Rh(PPh₃)₂(cod)][BF₄]$ (cod = cycloocta-1,5-diene) affords the green-black complex (2) , \dagger the structure of which (Figure 1) was established by X -ray diffraction. \ddagger The molecule has a Y-shaped WRhP₂ core in which μ -CR and μ -CO ligands bridge opposite sides of the WRhP₂ plane. The Rh–W [2.681(1) \vec{A}] and μ -C–W [1.880(6) A] separations in **(2)** are distinctly shorter than those in the related dimetal compound $\left[\text{RhW}(\mu-\text{CR})(\text{CO})_2(\text{PMe}_3)(\eta-\text{C})\right]$ C₅H₅)(η -C₉H₇)] [Rh-W 2.796(1), μ -C-W 1.913(14) Å],⁶ in accord with both metal centres being formally electronically unsaturated. As expected, the C_2B_9 cage in the precursor has remained intact in the product.

In contrast with the formation of **(2)** from $[Rh(PPh₃)₂(cod)][BF₄]$ and (1), the latter reacts with $[Rh(PPh₃)₂(nbd)][BF₄]$ (nbd = norbornadiene) to afford a black crystalline product (3) which has a structure (Figure 2) \ddagger with a nortricyclane unit bonded to a boron atom in the open face of the carbaborane cage. Thus an apparent unprecedented hydroboration reaction has occurred in which a cage B-H adds 1,4 to the homodiene with concomitant C-C bond formation. The overall geometry of the central core of **(3)** is remarkably similar to that of **(2),** the most noticeable difference being a shortening of the Rh-W distance [2.662(2) \AA] in the former. In the two molecules the two bridging carbon atoms (CR and CO) are not coplanar, the dihedral angle between the planes $\mathring{R}h(\mu$ -CO)W and $\mathring{R}h(\mu$ -CR)W being 13[°] in **(2)** and 20" in **(3).** Attachment of the nortricyclane fragment F₄] and (1), the latter reats with
F₄] and (1), the latter reats with
 F_4] (nbd = norbornadiene) to afford a
duct (3) which has a structure (Figure 2) $\frac{1}{4}$
unit bonded to a boron atom in the open
ane cage. Thus

[†] Selected spectroscopic data [i.r. measured in CH₂Cl₂, n.m.r. measured in CD_2Cl_2 (¹H, ¹¹B-{¹H}) or CD_2Cl_2 -CH₂Cl₂ (¹³C-{¹H}), coupling constants in Hz, chemical shifts are to high frequency and relative to BF_3 ·Et₂O (external) for ¹¹B-{¹H} and to 85% H₃PO₄ (external) for $3^{1}P-\{1H\}$: Compound **(1)**, v_{CO} (max) at 1956s and 1874s cm⁻¹, v_{BH} (max) at 2516m cm⁻¹. N.m.r. ¹H, δ 7.70–7.25 (m, 34 H, Ph), 2.18 (s, 3 H, Me-4), and 2.07 (s, 6 H, Me-cage); $^{11}B-\{1H\}$, δ -10.9 (5 B), -20.2 (3 B), and -38.3 p.p.m. (1 B); ¹³C-{¹H}, δ 298.3 [CR, $J(WC)$ 198] and 226.8 p.p.m. [CO, $J(WC)$ 182]. Compound (2), $v_{\rm CO}$ (max) at 1961s and 1767s cm⁻¹, $v_{\rm BH}$ (max) at 2555m cm⁻¹. N.m.r.: ¹H, δ 7.35–7.12 (m, 34 H, Ph), 2.44 (s, 3 H, Me-4), and 1.90 (s, 6 H, Me-cage); ¹³C-{¹H}, δ 343.1 [d, μ -CR, J(RhC) 30] and 236.1 p.p.m. [d, CO, $J(RhC)$] $[7]$; ${}^{31}P$ - ${}^{1}H$ }, δ 32.2 p.p.m. [d, $J(RhP)$] 166]. Compound **(3)**, v_{CO} (max) at 1961s and 1756s cm⁻¹, v_{BH} (max) at 2553m cm⁻¹. N.m.r.: ¹³C-{¹H}, *δ* 338.2 [d, μ-CR, J(RhC) 28], 256.2 (br, μ -CO), and 222.5 p.p.m. (br, CO); 31P-{1H}, δ 33.9 p.p.m. [d, $J(RhP)$ 166], at -60 °C, δ 32.5 [d of d of d, ABX system, $J(PP)$ 32, *J*(RhP) 180 and 152]. Compound (4), v_{max} (CO) at 2002s and 1933s cm-I, **Y,,** (BH) 2554m cm-I. N.m.r.: **13C-{lH},** 6 292.9 **[d,** p-CR, $J(PC)$ 28] and 220.0 p.p.m. [CO, $J(WC)$ 162]; $31P - {1H}$, δ 56.1 p.p.m.

^{1.} The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

Crystal data for (2): $C_{50}H_{52}B_9O_2P_2RhW$, $M = 1130.8$, triclinic, space group $\overline{P1}$ (No. 2), $a = 11.814(3)$, $b = 15.375(3)$, $c = 14.756(3)$ Å, $\alpha =$ $84.74(2)$, $\beta = 107.41(1)$, $\gamma = 101.21(2)$ °, $U = 2506(1)$ \mathring{A} ³, $Z = 2$, $D_x =$ 1.50 g cm⁻³, $F(000) = 1124$, $\mu(Mo-K_{\alpha}) = 27.7$ cm⁻¹. Current *R* 0.031 $(R' 0.030)$ for 4638 absorption corrected intensities (293 K, 2 $\theta \le 43^{\circ}$) measured on a Nicolet *P3m* diffractometer $[I \ge 1.5\sigma(I)]$; Mo-K_{α} X-radiation, graphite monochromator ($\overline{\lambda} = 0.71069 \text{ Å}$). The structure was solved by heavy atom (Patterson and Fourier) methods and refined using blocked-cascade least squares.

Crystal data for (3): $C_{57}H_{60}B_9O_2P_2RhW·1/2CH_2Cl_2$, $M = 1262.5$, triclinic, space group $\overline{P1}$ (No. 2), $\overline{a} = 12.006(4)$, $\overline{b} = 14.692(4)$, $c =$ 18.033(7) Å, $\alpha = 86.28(4)$, $\beta = 83.44(3)$, $\gamma = 67.46(3)$ °, $U = 2918(3)$ \mathring{A}^3 , $Z = 2$, $D_x = 1.44$ g cm⁻³, $F(000) = 1270$, $\mu(\text{Mo-}K_{\alpha}) = 24.3 \text{ cm}^{-1}$. Current *R* 0.059 *(R' 0.056)* for 3889 absorption corrected intensities $[293 \text{ K}, 2\theta \leq 40^\circ, I \geq 2\sigma(I)].$

Crystal data for (4): $C_{32}H_{37}AuB_9O_2PW \cdot CH_2Cl_2$, $M = 1047.7$, monoclinic, space group $P2_1/n$ (No. 14), $a = 20.655(7)$, $b = 8.572(4)$, c 24.26(1) Å, $\beta = 114.62(3)^\circ$, $U = 3904(6)$ Å³, $Z = 4$, $D_X = 1.79$ g cm⁻³, $F(000) = 2000$, $\mu(\text{Mo-}K_{\alpha}) = 69.6$ cm⁻¹. Current R 0.072 (R' 0.073) for 2783 absorption corrected intensities [293 K, $2\theta \le 50^\circ$, $I \ge$ $2.5\sigma(I)$].

Figure 1. Molecular structure of $\text{RhW}(\mu\text{-CO})(\mu\text{-CC}_6\text{H}_4\text{Me-})$ 4)(CO)(PPh₃)₂(η-C₂B₉H₉Me₂)] (2). Dimensions: Rh-W 2.681(1), $W-C(a)$ 1.880(6), \overline{R} h-C(a) 2.068(5), W-C(01) 2.032(6), Rh-C(01) 2.105(6), Rh-P(1) 2.346(2), Rh-P(2) 2.281(2) Å; W-C(01)-O(01) 160.2(5), Rh-C(01)-O(01) 118.9(4), W-C(a)-Rh 85.4(2), W-C(02)-O(02) 176.9(5), P(1)-Rh-P(2) 98.8(1)°.

Figure 2. Molecular structure of $\text{[RhW}(\mu\text{-CO})(\mu\text{-CC}_6\text{H}_4\text{Me-4})$ - $(CO)(PPh_3)_2{\eta$ -C₂B₉(C₇H₉)H₈Me₂}] (3). Dimensions: Rh-W 2.662(2), W-C(71) 1.84(2), Rh-C(71) 2.12(2), W-C(4) 2.07(2), Rh-C(4) 2.05(2), Rh-P(1) 2.287(4), Rh-P(2) 2.351(5), W-B(4) 2.39(2), W-B(5) 2.47(2), W-B(6) 2.38(2), W-C(2) 2.36(2), W-C(3) 124(1), W-C(71)-Rh 84.1(7), W-C(5)-0(5) 175(2), P(l)-Rh-P(2) 2.46(2), B(5)-C(n1) 1.64(4) Å; W-C(4)-O(4) 156(1), Rh-C(4)-O(4) $98.7(2)$ °.

increases the W-B(5) distance by *ca.* 0.085 Å compared with the other two W-B separations (Figure 2).

A reaction of this kind has not been observed previously and raises the question as to whether this is an example of a metal promoted hydroboration reaction. In this context it is particularly interesting that **(2)** does not react with norbornadiene to form **(3).**

Compounds **(2)** and **(3)** also show interesting dynamic behaviour. Only one 3iP resonance is observed in the n.m.r. spectra[†] at room temperature; however, at -60 °C the spectrum of **(3)** has an ABX pattern suggesting that rotation of the $RhP₂$ unit about the Rh–W axis is slow on the n.m.r. time scale at this temperature. In addition, there is a process

Figure 3. Molecular structure of $[AuW(\mu-CC_6H_4Me-4)(CO)_2(PPh_3) (\eta - C_2 B_9 H_9 M e_2)$ (4). Dimensions: Au-W 2.780(8), Au-C(41) 2.19(3), W-C(41) 1.88(3), Au-P 2.27(1) Å; Au-C(41)-W 86(1), P-Au-C(41) 162.7(7), W-C(5)-O(5) 177(3), W-C(6)-O(6) 174(2)°.

associated with CO site exchange. The ${}^{13}C$ -{ ${}^{1}H$ } spectrum of **(2)** shows only one CO environment at room temperature, whereas the spectrum of **(3)** exhibits two broad signals which diverge on cooling to -60° C. This implies a rocking movement of the two CO groups between bridging and terminal sites, so that in **(2)** only one signal is observed as a result of the exchange, whereas in **(3)** the asymmetry of the molecule causes one carbonyl to spend more time bridging than the other.

The orange gold-tungsten compound **(4)t** was prepared from **(1)** and $[AuCl(PPh_3)]$ in thf, in the presence of TIPF₆. The structure is shown in Figure 3.4 The Au-W distance [2.780(8) \AA] is similar to that observed⁷ [2.752(1) \AA] in the cation $\left[\text{AuW}_2(\mu\text{-CR})_2(\text{CO})_4(\eta\text{-C}_5\text{H}_5)_2 \right]$ +. The $\mu\text{-C-W}$ separation $[1.88(3)$ \AA is similar to those in (2) and (3), implying multiple bond character. However, in contrast with the two rhodium complexes, the CO ligands in **(4)** show no tendency to adopt a bridge bonding mode.

We thank the S.E.R.C. for a research studentship (C.M.N.) and Shell Research Ltd. for a CASE research studentship $(A.P.J.).$

Received, 21st May 1984; Corn. 707

References

- 1 M. F. Hawthorne, D. C. Young, and P. A. Wegner, *J.* Am. *Chem.* Soc., 1965,87, 1818; M. F. Hawthorne, Acc. *Chem. Res.,* 1968, **1,** 281; K. P. Callahan and M. F. Hawthorne, Adv. Organomet. Chem., 1976, **14,** 145.
- 2 T. P. Hanusa, *Polyhedron,* 1982, **1,** 663.
- 3 F. G. A. Stone,Angew. *Chem., Int. Ed. Engl.,* 1984, **23,** 89.
- 4 M. **F.** Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, and P. A. Wegner, *J.* Am. *Chem.* SOC., 1968,90, 879.
- *⁵*E. 0. Fischer, T. L. Lindner, G. Huttner, P. Friedrich, F. R. Kreissl, and J. 0. Besenhard, Chern. *Ber.,* 1977, **110,** 3397.
- 6 J. C. Jeffery, C. Sambale, M. F. Schmidt. and F. G. **A.** Stone, Organometallics, 1982, **1,** 1597.
- 7 M. R. Awang, G. A. Carriedo, J. A. K. Howard, K. **A.** Mead, I. Moore, C. M. Nunn, and F. G. A. Stone, *1.* Chem. Soc., *Chem. Commun.,* 1983, 964.