[3]-, [4]-, and [5]-Pericyclyne: Through-bond *vs.* **Through-space Interactions**

Michael J. S. Dewar* and Mary K. Holloway

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.

MNDO calculations for **[3]-, [4]-,** and [5]-pericyclyne indicate that interactions between triple bonds are hyperconjugative in the **n** system and homoconjugative in the *o* system and that [3]pericyclyne may be interconverted with a valence tautomer, tricyclopropabenzene.

Recently, Scott *et al.* reported¹ the synthesis and photoelectron spectrum of decamethyl[5]pericyclyne **(l),** the permethylated derivative of **(2). A** number of low energy ionizations were observed, implying interactions between the π MOs of the acetylene groups. These interactions were assumed to be of the homoconjugative (through-space) type and similar

homoconjugation was suggested for the lower pericyclynes. **(3)** and **(4),** which have yet to be synthesized.

We have performed MND02 RHF calculations on **(2), (3),** and (4) at \dot{D}_{5h} , D_{4h} , and D_{3h} geometries, respectively. These were shown to be minima by calculating force constants.³ Their calculated heats of formation and geometries are shown

Table 1. MNDO RHF heats of formation (kcal/mol) and geometries of (2) , (3) , and (4) (bond lengths in \mathring{A} , angles in degrees).

Compound (2) (3) (4)	$\Delta H_{\rm c}$ 204.6 173.1 165.9	$C\equiv C$ 1.198 1.200 1.210	$C-C$ 1.456 1.458 1.468	$C-H$ 1.12 1.12 1.11	$C-C-C$ 108.0 106.7 100.0	$C-C\equiv C$ 180.0 171.6 160.0	$H-C-C$ 110.5 110.9 119.2	$H-C-C\equiv C$ ±121 ±121 ±119
π		σ	π		σ -10.20 ---- A ₂ " (9.07) --10.45 === E ₂ " -10.45 === E ₂ " (9.64) --10.64 === E _g -10.96 === E ₁ " -10.94 == E ₁ " -10.94 == E ₁ " (9.90) --10.94 == B _{2u} -10.86 == E _u -10.84 == E ⁿ -10.84 == E ⁿ -10.84 =		π	σ -10.50 = E' -11.07 - A'
$-14.60 \rightleftharpoons E2$ " -15.21 = E_1 " -15.52 — A''_2	(2)		$_1 - 15.07 \rightleftharpoons E_q$ $1 - 15.54$ - A_{2u}	(3)		-14.88 = E' -15.61 — A''_2	(4)	

Figure 1. Calculated π orbitals (eV) for (2), (3) and (4). The upper half contains the acetylenic π and σ type orbitals while the lower half contains the methylenic π type orbitals.

in Table 1; the π -orbital energies and symmetries in each are depicted in Figure 1.

Since the internal angles of a five-membered ring are a relatively unstrained 108° , the acetylene units in (2) are, not unexpectedly, calculated to be linear. However, (3) and (4) have C-C=C bond angles of 172 and 160°, respectively, thereby relieving the angle strain at the methylene groups.

The ten highest occupied MOs of (2) are acetylenic π MOs, five being of π type and five of σ type, with two degenerate pairs of MOs in each set. Their energies (see the upper half of Figure 1) correspond quite well to the ionization potentials (I.P.s) reported for (1) $(9.07, 9.31, 9.64, 9.90,$ and $10.20 \text{ eV})$ apart from being greater by $ca. 1 eV.$ † This difference can be attributed to the inductive field effects of the methyl groups which should uniformly raise the energies of all the π MOs. The assignments of the observed I.P.s for (1) are indicated in parentheses in Figure 1.

† MNDO is expected to underestimate long-range through-space interactions owing to the use of Slater AOs to calculate overlap integrals and hence resonance integrals. Thus, while the splittings of the π -type MOs in (2) are likely to be reproduced reasonably well, those of the o-type MOs are probably underestimated.

Figure 2. A depiction of the contribution of CH bond MOs to the π system of a pericyclyne.

If the interactions between the acetylenic π MOs were of the homoconjugative (through-space) type, their order in increasing energy would be $A \le E_1 \le E_2$. As Figure 1 shows, the order of MOs in the *o* set conforms to this. However, the order of the π MOs is exactly the opposite. Here, the acetylenic MOs must interact in some other way.

Hoffmann *et al.4* have pointed out that inversion of the order of the MOs can occur in analogous situations if the coupling between π units is by a hyperconjugative (throughbond) interaction involving a single intervening carbon atom. In the case of **(2),** each methylene group will contribute a single orbital to the π system, this being an antisymmetric combination (ψ_{1-5}) of CH bond MOs, as depicted in Figure 2. The occupied π MOs are then derived from these five orbitals and five acetylenic π MOs (ϕ_{1-5}). The resulting set of cyclic π MOs follows the same pattern as the π MOs in an analogous polymethine, with A-type MOs at the top and bottom and degenerate E-type MOs in between. Since the CH orbitals *(9)* are lower in energy than the acetylenic orbitals (@), the lower five MOs are composed mainly of CH orbitals and the upper five of acetylenic ones. The inversion in the order of the low-energy π MOs in (2) is thus seen to be due to the fact that they represent the upper five MOs of a ten-orbital set rather than a single five-orbital set.

As there are no *o* MOs that can interact effectively with the five *o* type acetylene MOs, they appear in a 'normal' order, with the interactions between them being strictly of the through-space type.

The order of the π MOs in (3) and (4) is again inverted, implying that the through-bond interactions still dominate. The difference in energy between CH orbitals and acetylenic π MOs in **(3)** leads to the removal of the degeneracy of the fourth and fifth MOs. The pattern of the four higher MOs consequently seems deceptively normal. The order is, however, inverted: the MO in which all the acetylenic orbitals have similar signs is the highest in energy instead of the lowest.

The coupling between acetylene units in the o-type MOs of **(3)** and **(4)** is again of the through-space type, as in **(2).**

A geometry for **(4)** with linear acetylene units and internal angles of 60" was also found to be a minimum on the MNDO RHF potential surface, corresponding to tricyclopropabenzene+ *(5),* a valence tautomer of **(4)** which has also yet to be synthesized. The geometry and heat of formation of *(5)* are shown in Figure $3(a)$. Since the formerly acetylenic bonds (a) are still much shorter than the shared ring bonds (b) this structure could be considered as a bond-localized benzene ring in which Kekule structure **(6)** is favoured over **(7).** The idea of bond localization in small-ring fused benzenes was first

Figure 3. Calculated geometries (bond lengths in A and angles in degrees) and heats of formation (kcal/mol)¶ for (a) (5) and (b) the transition state for interconversion of **(4)** and *(5).*

proposed by Mills and Nixon⁵ for benzocyclopentene (8). Although X -ray studies⁶ of benzocyclopropene derivatives (9) showed no evidence for bond fixation beyond a shortening of the bond common to both rings, the effect of three small-ring fusions could be much greater.

Since (5) might be formed from (4) *via* an allowed $\int_{\pi}^{1} 2_s + \frac{1}{2_s}$ $+_{\pi}2$ _s] cycloaddition process,⁷ we were interested in examining this portion of the C_9H_6 potential surface, particularly as a synchronous concerted reaction path seemed likely. This was found to be the case: the highly symmetrical transition state§ geometry and its heat of formation are shown in Figure 3(b). The calculated activation barrier for conversion of **(4)** into *(5)* is 68.6 kcal/mol, \llbracket while that for the opposite reaction is 7.9 kcal/mol. The transition state geometry is very like *(9,* as might be expected based on the Hammond postulate.⁸

This work was supported by the Air Force Office of Scientific Research and the Robert **A.** Welch Foundation.

 $\textsf{1}$ kcal = 4.184 kJ.

[§] The transition state was shown to have one, and only one, negative eigenvalue by calculating force constants (ref. 3).

^{2;} Tetracyclo[6.1. 0.02.4.0s,7]nona- 1,4,7- triene .

The calculations were carried out using a VAX 11-780 computer provided by grants from the National Science Foundation and the University of Texas at Austin.

Received, 7th June 1984; Corn. 793

References

- 1 L. T. Scott, G. J. DeCicco, J. L. Hyun, and G. Reinhardt, *J. Am. Chem. SOC.,* 1983, **105,** 7760.
- 2 M. **J. S.** Dewar and W. Thiel, *J. Am. Chem. SOC.,* 1977,99,4899; 4907.
- 4 R. Hoffmann, **A.** Imamura, and W. J. Hehre, *J. Am. Chem. SOC.,* 1968,90, 1499. See also R. Hoffmann, *Acc. Chem. Res.,* 1970,4, 1; M. N. Paddon-Row, *Acc. Chem. Res.,* 1982, **15,** 245.
- *5* W. H. Mills and I. G. Nixon, *J. Chem. SOC.,* 1930,2510.
- 6 E. Carstensen-Oeser, B. Müller, and H. Dürr, Angew. Chem., Int. *Ed. Engl.,* 1972, **11,** 422; B. Halton, T. J. McLennan, and W. T. Robinson, *Acta Crystallogr., Sect. B,* 1976, *32,* 1889.
- 7 R. Hoffmann and R. B. Woodward, *J. Am. Chem. SOC.,* 1965,87, 2046; and R. Woodward and R. B. Hoffmann, 'The Conservation of Orbital Symmetry.'
- 8 G. **S.** Hammond, *J. Am. Chem. SOC.,* 1955, 77, 334.