A Novel Route to the 2-Aza-adamantyl System *via* Photochemical Ring Contraction of

Epoxy 4-Azahomoadamantanes

Shoji Eguchi,* Koji Asai, and Tadashi Sasaki

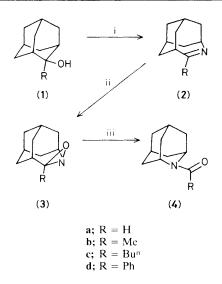
Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Epoxy 4-azahomoadamantanes rearranged to give, on photolysis, *N*-acyl-substituted 2-aza-adamantanes as the only products.

Although several synthetic routes to the 2-aza-adamantyl system have been reported, all of them require elusive multistep procedures or starting materials, such as bicyclo[3.3.1]nonane-3,7-dione, bicyclo[3.3.1]nona-2,6-diene, and 3-*endo*-aminobicyclo[3.3.1]non-6-ene, that are not readily accessible.^{1.2} We now report a novel and convenient

route to the 2-aza-adamantyl system (4) utilizing a facile photochemical ring contraction of the epoxy 4-azahomoadamantanes, (3) (Scheme 1).

The required precursors (3a-d) were prepared by *m*-chloroperbenzoic acid (*m*-CPBA) oxidation of the azahomoadamantenes (2a-d), which are readily obtainable from the


	Reaction				
Imine	(3)	time/h	Yield/% ^c	M.p./°C	δ 3-H and 6-H ^d
(2a)	(3 a)	31	61	>300	3.90 (s), 2.60 (s)
(2b)	(3b) ^f	12	91	65—68	3.82 (s), 2.35 (s)
(2c)	(3c)	15	71	Oil	3.74 (s), 2.35 (s) ^e
(2d)	(3d)	12	63	105-107	3.93 (s), 2.99 (s) ^e

" Imine (2) was oxidized by *m*-CPBA (1.1 equiv.) in CHCl₃=5% aqueous NaHCO₃ at 5—20 °C. ^b In CH₂Cl₂–solid NaHCO₃. ^c Yield of isolated pure product after chromatography (Woelm neutral alumina–CH₂Cl₂). ^d In CDCl₃ (60 MHz). ^e In CCl₄. ⁺ For a low yield synthesis by peracetic acid oxidation see T. Sasaki, S. Eguchi, and N. Toi, *J. Org. Chem.*, 1978, **43**, 3810.

Table 2. The N-acyl-2-aza-adamantanes (4) obtained from (3).^a

(3)	Conversion/%b	Product	Yield/% ^b	M.p./⁰C	δ 3-H and 6-H ^e
(3a)	28	(. ⁾	67	165-167	4.52 (s), 3.73 (s)
(3b)	46	(4D)	50	Oil	4.72 (s), 3.93 (s)
(3c)	50	(4c)	60	Oil	4.73 (s), 3.98 (s)
(3d)	44	(4d)d	44	8891	4.93(s), 3.90(s)

^a A 4.7—6.0 mM solution of (3) in cyclohexane was irradiated with a 60 W low pressure Hg lamp through a quartz filter under argon for 0.5 h at 20—30 °C. ^b Based on isolated amounts of (3) and (4). ^c In CCl₄ (60 MHz). ^d Reported as an oil in ref. 1(b); a trace of (2d) was also produced.

Scheme 1. i, NaN_3 -CHCl₃-MeSO₃H (ref. 3); ii, *m*-CPBA-CHCl₃-NaHCO₃; iii, *hv*-cyclohexane.

corresponding 2-hydroxyadamantanes (1a-d).³ A mixture of (2a) with *m*-CPBA (1.1 equiv.) in CH₂Cl₂-NaHCO₃ stored at 5–20 °C, followed by the usual work-up and short column chromatography (Woelm neutral alumina-CH₂Cl₂) gave (3a) as sublimable crystals (61%).⁺ The other epoxy 4-azahomo-adamantanes (3b-d) were obtained using a similar method (Table 1).

Compounds (3) in cyclohexane were irradiated for 0.5 h with a low pressure Hg lamp through a quartz filter under argon. In each case a single product was formed after a short

time; longer periods gave a complex mixture. The initial product in each case was isolated by chromatography (Merck, alumina 60 PF₂₅₄, type E–CH₂Cl₂) and characterized as the corresponding *N*-acyl-2-aza-adamantane (4) by microanalytical and spectral data. The i.r. spectra showed a strong carbonyl absorption at *ca*. 1640 cm⁻¹, and the ¹H n.m.r. spectra showed two broad one-proton singlets at δ 4.93–4.52 and 3.90–3.73 characteristic of bridgehead protons adjacent to nitrogen. The results are summarized in Table 2.

The above facile and exclusive photochemical ringcontraction of (**3**) is rationalized in terms of stereoelectronic control theory,⁴ *i.e.*, the geometrical arrangement of the nitrogen lone pair and the skeletal C-5–C-6 bond in an *anti*-relation in the 4-azahomoadamantane (**3**), is favourable for the rearrangement.

This ring-expansion and ring-contraction sequence of the adamantane skeleton thus provides a novel and convenient route to the 2-aza-adamantvl system.

Received, 1st June 1984; Com. 764

References

- (a) T. Sasaki, Adv. Heterocycl. Chem., 1982, 30, 86, and references cited therein; J. G. Henkel, W. C. Faith, and J. T. Hane, J. Org. Chem., 1981, 46, 3483; (b) J. G. Henkel and W. C. Faith, *ibid.*, p. 4953; (c) W. H. Staas and L. A. Spurlock, *ibid.*, 1974, 39, 3822; R. J. Schultz, W. H. Staas, and L. A. Spurlock, *ibid.*, 1973, 38, 3091.
- 2 T. Sasaki, S. Eguchi, N. Toi, T. Okano, and Y. Furukawa, J. Chem. Soc., Perkin Trans. 1, 1983, 2529.
- 3 T. Sasaki, S. Eguchi, and N. Toi, *Heterocycles*, 1977, **15**, 315; T. Sasaki, S. Eguchi, and N. Toi, *J. Org. Chem.*, 1978, **43**, 3810; 1979, **44**, 3711; see also ref. 2.
- 4 A. Lattes, E. Oliveros, M. Riviére, C. Belzecki, D. Mostowicz, W. Abramskij, C. Piccinni-Leopardi, G. Germain, and M. Van Meerssche, J. Am. Chem. Soc., 1982, 104, 3929; E. Oliveros, M. Riviere, J. P. Malricu, and Ch. Teichteil, *ibid.*, 1979, 101, 318.

⁺ All new compounds had spectral and microanalytical data in agreement with the assigned structures.