Generation and Trapping of a C-Unsubstituted Methylenephosphine Sulphide

Eliane Deschamps and Franqois Mathey"

Laboratoire **C.** *N. R.S.-S. N.* P. *E.,* 2-8, *rue Henry Dunant, 94320 Thiais, France*

The synthesis of a 7-phosphabicyclo[2.2.2]octa-2,5-diene P-sulphide is described; on thermolysis in boiling toluene, this compound generates Ph-P(S)=CH₂ which can be trapped by methanol, 2,3-dimethylbutadiene, and benzylideneacetophenone.

Whereas numerous studies have been devoted to the synthesis and chemistry of methylenephosphines¹ and methylenephosphine oxides,² almost nothing is known about methylenephosphine sulphides. These species have been generated either by direct sulphurization of methylenephosphines $3-5$ or by rearrangement of thiophosphorylcarbenes.6.7 In all cases, the P=C double bonds were sterically crowded and their chemistry was not seriously explored.[†] In view of this, we decided to synthesise a series of precursors which would, at reasonable temperatures, lead to 'naked' (and thus highly reactives) methylenephosphine sulphides.

Our initial experiments started with the readily available 1,2-dihydrophosphinine oxide (1) .⁹ This oxide was treated with dimethyl acetylenedicarboxylate in the presence of aluminium trichloride as a catalyst (Scheme 1). After hydrolysis (ice + NH₄Cl) and evaporation of CH₂Cl₂, the organic residue was washed with $Et₂O$ and chromatographed on a silica gel column with ethyl acetate. The structure of **(2)** was established by elemental analysis, mass spectrometry { (electron impact, 70 eV, 185 °C): m/z 436 (M^+ , 2.5%) and 266 $[M - PhD(O)CH₂OMe, 100%]$ and ¹H, ¹³C, and ³¹P n.m.r.

Scheme 1. *Reagents:* i, $MeO₂CC\equiv CCO₂Me$ (1.5 equiv.), AlCl₃ (5 equiv.), CH_2Cl_2 , reflux, 2.5 h; ii, P_4S_{10} (0.5 equiv.), C_6H_6 , reflux, 2.5 h.

spectroscopy δ , +ve for downfield shifts, ref. external 85% H_3PO_4 : $\delta(^{31}P)$ +46.2 p.p.m. in CDCl₃. The corresponding sulphide **(3)** was obtained by the reaction of freshly purified P_4S_{10} (continuous extraction with CS_2) with (2). After hydrolysis $(H_2O + K_2CO_3)$, the organic residue was recrystallized from acetone-light petroleum or chromatographed on silica gel with toluene-ethyl acetate (80 : 20) as eluant. The n.m.r. parameters of (3)^{\ddagger} were closely similar to those of (2)

[†] The only reported reactions include the addition of alcohols^{4,6,7} and the addition of sulphur.³ When generated by rearrangement of thiophosphorylcarbenes,^{6,7} the reactivity of methylenephosphine sulphides is often masked by the reactivity of their carbene precursors.

ri: **(3)** : 6(3*P) N.m.r. (CH,Cl,) *+58.7* **p.p.m.;** 6(l'C) n.m.r. (CDCI,) 17.23 [d.J(C-P) 3.7 Hz, Me], 19.78 [d, J(C-P) 11 Hz, Me]. 43.98 [d. $1J(C-P)$ 85.5 Hz, CH₂P, 44.34 [d, $2J(C-P)$ 9.8 Hz, Me-C sp³], 51.86 (s, OMe), 52.22 (s, OMe), and 56.83 p.p.m. [d, $J(C-P)$ 36.6 Hz, $Ph-C-P$].

but its mass spectrum did not contain the molecular ion peak, suggesting lower thermal stability. Indeed, **(3)** decomposed readily in boiling toluene whereas **(2)** decomposed only around 170 "C [this thermal instability of **(3)** perhaps explains why the reaction of dimethyl acetylenedicarboxylate with the P-sulphide corresponding to **(1)** leads only to decomposition products]. According to 31P n.m.r. experiments, the decomposition of **(3)** was complete in *ca.* 3 h in boiling toluene. The corresponding phthalate **(4)** was recovered in quantitative yield. When no trapping reagent was added to the reaction medium, the expected **phenyl(methy1ene)phosphine** sulphide (5) polymerized $[31P]$ resonances at $+30$ (broad), $+57$, $+58$, $+84.6$, and $+84.9$ p.p.m.].

The reaction with methanol led to the thiophosphinate *(6)* which was purified by chromatography on silica gel with toluene-ethyl acetate (90 : 10) as eluant and characterized by ³¹P $[\delta({}^{31}P) + 89.6 \text{ p.p.m. in } CH_2Cl_2]$ and ¹H n.m.r. spectroscopy $\delta(\text{1H})$ 2.0 [d, 3H, ²J(H-P) 13.4 Hz, MeP], 3.57 [d, 3H, **3J(H-P)** 13.4 Hz, OMe], 7.55 (m, 3H, Ph), and 7.95 (m, 2H, $Ph \ ortho)$ in $CDCl₃$.

The reaction with 2,3-dimethylbutadiene led to the tetrahydrophosphinine **(7)** which was chromatographed twice with toluene–Et₂O (95:5) as eluant after partial removal of (4) by precipitation in hexane. Compound **(7)** was mainly characterized by ${}^{31}P$ [$\delta({}^{31}P)$ +29.8 p.p.m. in CH₂Cl₂] and ${}^{13}C$ n.m.r. spectroscopy $\{8(^{13}C)$ 20.05 [d, J(C-P) 2.4 Hz, Me], 21.54 [d, $J(C-P)$ 11 Hz, Me], 28.93 [d, ²J(C-P) 6.1 Hz, CH₂], 29.14 [d, 120.92 [d, $J(C-P)$ 7.3 Hz, Me-C=], and 128.07 [d, $J(C-P)$] 12.2 Hz, Me–C= \vert in CDCl₃ \rangle . ¹J(C-P) 53.7 Hz, CH₂P], 37.29 [d, ¹J(C-P) 52.5 Hz, CH₂P],

The reaction with benzylideneacetophenone led to the **tetrahydro-l,2-oxaphosphinine (8)** as a mixture of two isomers $\left[\delta^{(31P)} + 82.57 \text{ p.p.m.} \text{ for } (8a) \text{ and } +80.7 \text{ p.p.m.} \text{ for } (8b) \text{ in }\right]$ CH_2Cl_2]. The crude product was purified by chromatography with hexane-Et₂O (80:20) as eluant. Compound (8a) eluted first, followed by **(8b).** Only the more abundant **(8b)** was fully characterized mainly by ¹H and ¹³C n.m.r. spectroscopy $\{\delta(^{13}C)$ 38.44 [d, $\dot{2}J(\dot{C}-P)$ 6.1 Hz, CHPh], 38.80 [d,

 $^{1}J(C-P)$ 62.3 Hz, CH₂P], 106.75 [d, 3J(C-P) 9.8 Hz, HC=], and 150.46 [d, $2J(C-P)$ 11 Hz, Ph-C-O] in CDCl₃. The PhCH protons of $(8a)$ and $(8b)$ appear respectively at δ 4.45 and 3.60 in CDC13. This result suggests that **(8b)** would be the less hindered isomer with *cis* (Ph)C-H and P-Ph bonds.

Since it has never been possible to perform Diels-Alder reactions with methylenephosphine oxides up to now, 2 the most noteworthy among this series of results is the successful condensation of *(5)* with dimethylbutadiene. We cannot decide yet whether this success reflects the low steric hindrance of the P=C double bond in (5) or an intrinsically higher reactivity of the P=C double bond in $-P(S)=C\langle vs. \rangle$ $-P(O)=C\langle$ systems.

Received, 30th May 1984; Corn. 736

References

- 1 R. Appel, F. Knoll, and I. Ruppert, *Angew. Chem., Int. Ed. Engl.*, 1981, **20,** 731.
- 2 M. Regitz and G. Maas, *Top. Curr. Chem.,* 1981, **97,** 71.
- 3 **E.** Niecke and **D.-A.** Wildbredt, *J. Chem. SOC., Chern. Commun.,* 1981, 72.
- 4 Th. **A.** van der Knaap, Th. C. Klebach, R. Lourens, M. Vos, and F. Bickelhaupt, *1. Am. Chem. SOC.,* 1983, **105,** 4026.
- 5 R. Appel, F. Knoch, and **H.** Kunze, *Angew. Chem., Int. Ed. Engl.,* 1984, **23,** 157.
- *6* B. Divisia, *Tetrahedron,* 1979, **35,** 181.
- 7 M. Yoshifuji, J.-I. Tagawa, and N. Inamoto, *Tetrahedron Lett.,* 1979, 2415.
- 8 The adverse effect of'steric crowding upon the reactivity of P=C double bonds is well illustrated by a comparison of the reactivities of various methylenephosphines toward conjugated dienes. Hindered methylenephosphines do not react whereas less hindered methylenephosphines do react. See, for example: Th. **A.** van der Knaap, Th. C. Klebach, F. Visser, R. Lourens, and **F.** Bickelhaupt, *Tetrahedron,* 1984, **40,** 991; A. Meriem, J. P. Majoral, M. Revel, and J. Navech, *Tetrahedron Lett.,* 1983, **24,** 1975.
- 9 E. Deschamps, F. Mathey, C. Knobler, and **Y.** Jeannin, *Organometallics,* in the press.